Support Vector Machines on Large Data Sets:
Simple Parallel Approaches

Oliver Meyer, Bernd Bischl and Claus Weihs

Lehrstuhl fuer Computergestuetzte Statistik, Technische Universitaet Dortmund
Vogelpothsweg 87, 44227 Dortmund
{meyer, bischl, weihs}@statistik.uni-dortmund.de

Abstract. Support Vector Machines (SVMs) are well-known for their excellent per-
formance in the field of statistical classification. Still, the high computational cost
due to the cubic runtime complexity is problematic for larger data sets. To mitigate
this, Graf et al. (2005) proposed the Cascade SVM. It is a simple, stepwise proce-
dure, in which the SVM is iteratively trained on subsets of the original data set and
support vectors of resulting models are combined to create new training sets. The
general idea is to bound the size of all considered training sets and therefore obtain a
significant speedup. Another relevant advantage is that this approach can easily be
parallelized because a number of independent models have to be fitted during each
stage of the cascade. Initial experiments show that even moderate parallelization
can reduce the computation time considerably, with only minor loss in accuracy.
We compare the Cascade SVM to the standard SVM and a simple parallel bagging
method w.r.t. both classification accuracy and training time. We also introduce a
new stepwise bagging approach that exploits parallelization in a better way than
the Cascade SVM and contains an adaptive stopping-time to select the number of
stages for improved accuracy.

1 Introduction

Support vector machines (e. g., Schoelkopf and Smola (2001)) are a very pop-
ular supervised learning algorithm for both classification and regression due to
their flexibility and high predictive power. One major obstacle in their appli-
cation to larger data sets is that their runtime scales approximately cubically
with the number of observations in the training set. Combined with the fact
that not one but multiple model fits have to be performed due to the ne-
cessity of hyperparameter tuning, their runtime often becomes prohibitively
large beyond 100.000 or 1 million observations. Many different approaches
have been suggested to speed up training time, among these online SVMs
(e.g., the LASVM by Border et al. (2005), sampling techniques and paral-
lelization schemes. In this article we will evaluate two quite simple methods
of the latter kind. All of our considered approaches break up the original data



2 Oliver Meyer, Bernd Bischl and Claus Weihs

set into smaller parts and fit individual SVM models on these. Because of
the already mentioned cubical time-scaling of the SVM algorithm w.r.t. the
number of data points a substantial speed up should be expected.

We state two further reasons for our general approach: a) Computational
power through multiple cores and multiple machines is often cheaply available
these days. b) We would like to keep as much as possible from the original
SVM algorithm (use it as a building block in our parallelization scheme) in
order to gain from future improvements in this area. It is also of general
interest for us, how far we can get with such relatively simple approaches.

In the following sections we will cover the basic SVM theory, describe the
considered parallelization approaches, state our experimental setup, report the
results and then summarize them with additional remarks for future research.

2 Support vector machines

In supervised machine learning, data for classification tasks can be represented
as a number of observations (x1,¥y1), (€2,Y1), -y (Tn, Yn) € X X Y, where the
set X' defines the space in which our feature vectors @; live in (here assumed to
be R? as we will mainly discuss the Gaussian kernel later on) and Y = {—1,1}
is the set of binary class labels. The support vector machine (SVM) relies on
two basic concepts:

a) Regularized risk minimization: We want to fit a large margin classifier
f:RP — R with a low empirical regularized risk:

(F.0) = arg _inf 1B+ C D Ll S(@i) +0) (1)

Here, b is the so-called bias term of the classifier and L is a loss function.
For classification with the SVM, we usually select the hinge loss L(y,t) =
max (0, 1 —yt). This is a convex, upper surrogate loss for the 0/1-loss L(y,t) =
I[yt < 0], which is of primary interest, but algorithmically intractable.

While the second term above (called the empirical risk) measures the close-
ness of the predictions f(x;) 4+ b to the true class labels —1 and 41, respec-
tively, by means of L, the first term ||f]|% is called a regularizer, relates to
the maximization of the margin and penalizes “non-smooth” functions f. The
balance between these two terms is controlled by the hyperparameter C. For
an unknown observation z the class label is predicted by sign( f (z) + 5)

b) Kernelization: In order to be able to solve non-linear classification prob-
lems we “kernelize” (1) by introducing a kernel function k¥ : X x X — R |
which measures the “similarity” of two observations. Formally, k is a symmet-
ric, positive semi-definite Mercer kernel. And H is now defined as the associ-
ated reproducing kernel Hilbert space for k, our generalized inner product in
H is (z,2')y = k(x,2’) and ||z||* = (2, 2)3 By using this so-called “kernel
trick” we implicitly map our data into a usually higher-dimensional space,



Support Vector Machines on Large Data Sets: Simple Parallel Approaches 3

enabling us to tackle nonlinear problems with essentially linear techniques.
The Gaussian kernel

k(zi, ;) = exp (—ollz; — z;[3) (2)

is arguably the most important and popular kernel function and we have there-
fore focused on it in all subsequent experiments. But note that all following
parallelization techniques are basically independent of this choice.

The optimization problem (1) is usually solved in its dual formulation and
leads to the following quadratic programming problem:

n n
1
mgxzai 3 Z Yiyi (@i, Tj)u
i=1 i,j=1 (3)

S.t.OgagCandyTazo,

where a denotes the vector of Lagrange multipliers.

As we will usually obtain a sparse solution due to the non-differentiability
of our hinge loss L, some «; will be zero, and the observations x; with a; > 0
shall be called support vectors (SVs). They are the samples solely responsible
for the shape of our decision border f(x) = 0. This is implied by the fact that
if we retrain an SVM on only the support vectors, we will arrive at exactly
the same model as with the full data set.

The SVM performance is quite sensitive to hyperparameter settings, e. g.,
the settings of the complexity parameter C and the kernel parameter ¢ for the
Gaussian kernel. Therefore, it is strongly recommended to perform hyperpa-
rameter tuning before the final model fit. Often a grid search approach is used,
where performance is estimated by cross-validation, but more sophisticated
methods become popular as well (see e.g., Koch et al. (2012)).

Multi-class problems are usually solved by either using a multi-class-to-
binary scheme (e.g., one-vs-one) or by directly changing the quadratic pro-
gramming problem in (3) to incorporate several classes.

3 Cascade Support Vector Machine

The Cascade SVM is a stepwise procedure that combines the results of mul-
tiple regular support vector machines to create one final model. The main
idea is to iteratively reduce a data set to its crucial data points before the
last step. This is done by locating potential support vectors and removing all
other samples from the data. The method described here is essentially taken
from the original paper by Graf et al. (2005):

1. Partition the data into k disjoint subsets of preferably equal size.
2. Independently train an SVM on each of the data subsets.
3. Combine the SVs of, e. g., pairs or triples of SVMs to create new subsets.



4 Oliver Meyer, Bernd Bischl and Claus Weihs

4. Repeat steps 2 and 3 for some time.
5. Train an SVM on all SVs that were finally obtained in step 4.

This algorithm (depicted in the right-hand side of Fig. 1) will be called
Cascade SVM or simply cascade. In the original paper, Graf et al. also con-
sidered the possibility of multiple runs through the cascade for each data set.
After finishing a run through the cascade the subsets for the first step of the
next run are created by combining the remaining SVs of the final model with
each subset from the first step of the first run. For speed reasons we always
only perform one run through the cascade.

4 Bagging-Like Support Vector Machines

Another generic and well-known concept in machine learning is bagging. Its
main advantage is that derived methods are usually accurate and very easy
to parallelize. Chawla et al. (2003) introduced and analyzed a simple variant,
which proved to perform well on large data sets for decision trees and neural
networks. Unlike in traditional bagging algorithms, the original data set is
randomly split into n disjoint (and not overlapping) subsamples, which all
contain %—th of the data. Then a classification model is trained on each of
these subsets. Classification of new data is done by majority voting with ties
being broken randomly. Hence, using SVMs means that the training of this
bagging-like method is equivalent to the first step of the Cascade SVM. By
comparing these two methods we can analyze if the additional steps of the
cascade (and the invested runtime) improves the accuracy of the procedure.
Fig. 1 shows the structures of a 4-2 Cascade SVM (C-4-2) — with 4 being
the number of subsets in the first step and 2 representing the number of models
being combined after every single step — and a bagged SVM using 3 bags.

Subsamples of the Dataset Subsamples of the Dataset

Lt [ 2] 3 | Lt [ 2 [ 3 | 4|
fit  |fit [fit ‘ﬁt fit |fit ‘ﬁt

(SvM J svM [ sVM ) (SVM [ SVM ) SVM J SVM )

[ Vote aggregation )

Fig. 1: Schemes for bagged SVM (left) and cascade (right)



Support Vector Machines on Large Data Sets: Simple Parallel Approaches 5
5 Stepwise Bagging

It can easily be seen that the possibility to parallelize the Cascade SVM
decreases in every step. This leads to the problem that an increasing number
of cores will stay idle during the later stages, and in the last stage only one
core can be used. We will also observe in the following experimental results
that both algorithms — cascade and bagging — will perform suboptimally in
some cases either with regard to runtime or accuracy. We therefore made the
following changes to the described cascade algorithm in order to maximally
use the number of available cores and to generally improve the algorithm by
combining the advantages of both methods:

1. In the first stage, the data is partitioned in k£ subsets as usual.

2. At beginning of each subsequent stage in the cascade, all remaining vectors

are combined into one set and then randomly divided into k£ overlapping

subsets. The size of the subsets is fixed to the size of the subsets of the first
stage, but not larger than 2/3 of the current data, if the former cannot
be done. Overlapping occurs as vectors are drawn with replacement.

In the final stage, a bagged SVM is created instead of a single model.

4. As it is problematic to determine the number of stages of this approach
we try to infer the optimal stopping time: At the beginning of the training
process we hold out 5% of the training data as an internal validation set.
After each stage we measure the error of the bagged model of & SVMs
from the current stage on this validation data. If the accuracy compared
to the previous stage decreases, we stop the process and return the bagged
model of the previous stage.

5. We have noticed that in some cases of a preliminary version of this stepwise
bagging algorithm the performance degraded when the support vectors
contained many wrongly classified examples. This happens in situations
with high Bayes error / label noise, because all misclassified examples au-
tomatically become support vectors and will therefore always be contained
in the training set for the next stage. As this seems somewhat counterin-
tuitive, we have opted not to select the support vectors in each stage, but
instead only the SVs on and within the margin. This has the additional
advantage that the set of relevant observations is reduced even further.

©w

6 Experimental Setup

We evaluate the mentioned parallelization schemes on 7 large data sets®. Their
respective names and characteristics are listed in Table 1. Some of the data
sets are multi-class, but as we want to focus on the analysis of the basic
SVM algorithm, which at least in its usual from can only handle two-class
problems, we have transformed the multi-class problems into binary ones.

! Can be obtained either from the LIBSVM web page or the UCI repository.



6 Oliver Meyer, Bernd Bischl and Claus Weihs

The transformation is stated in Table 1 as well. We have also eliminated
every feature from every data set which was either constant or for which more
than n — 1000 samples shared the same feature value.

As we are mainly interested in analyzing the possible speedup of the train-
ing algorithm we have taken a practical approach w.r.t. the hyperparame-
ter tuning in this article: For all data sets we have randomly sampled 10%
of all observations for tuning and then performed a usual grid search for
Cec27°23 ..., 2% and o € 2715,2713 | 23 estimating the misclassifica-
tion error by 5 fold cross-validation. The whole procedure was repeated five
times, for every point (C, o) the average misclassification rate was calculated,
and the optimal configuration was selected. In case of ties, a random one was
sampled from the optimal candidates. Table 1 displays the thereby obtained
parameterizations and these have been used in all subsequent experiments.

Table 1: Data sets, data characteristics, used hyperparameters, proportional
size of smallest class and multi-class binarization

Data set Size Features C o Smaller class  Binarization
covertype 581012 46 8 0.500 0.488 class 2 vs. rest
cod 429030 9 32 0.125 0.333
ijennl 191681 22 32 3.13e-2 0.096
miniboone 130064 50 32768 7.81e-3 0.281
acoustic 98528 50 8 3.13e-2 0.500 class 3 vs. rest
mnist 70000 478 32 1.95e-3 0.492 even vs. odd
connect 67557 94 512 4.88e-4 0.342 class 1 vs. rest

To compare the speedups of the different parallelization methods, we have
run the following algorithms: The basic SVM, the Cascade SVM with C-
27-3 (27-9-3-1 SVMs), C-27-27 (27-1 SVMs), C-9-3 (9-3-1 SVMs) and C-9-9
(9-1 SVMs), bagging with 9 bags (B-9) and the stepwise bagging approach
also with 9 subsets (SWB-9). For the basic SVM algorithm we have used
the implementation provided in the kernlab R package by Karatzoglou et al.
(2004). For all parallel methods we have used 9 cores. For all algorithms we
have repeatedly (10 times) split the data into a 3/4 part for training (with the
already mentioned hyperparameters) and 1/4 for testing. In all cases we have
measured the misclassification rate on the test set and the time in seconds
that the whole training process lasted.

7 Results

The results of our experiments are displayed in Fig. 2 and can loosely be
separated into three groups. For the data sets acoustic, cod and miniboone, the



Support Vector Machines on Large Data Sets: Simple Parallel Approaches 7

bagged SVMs lead to a better or at least equally good accuracy as the Cascade
SVMs in only a fraction of its training time. Since the bagged SVM is nothing
else but the first step of a cascade, this means that the subsequent steps of the
cascade do not increase or even decrease the quality of the prediction. This
does not mean that the Cascade SVM leads to bad results on all of these sets.
In the case of miniboone for example it performs nearly as good as the classic
SVM in just about 4000 seconds compared to 65000. But bagging does the
same in only 350 seconds. On these data sets the stepwise bagging procedure
usually leads to an accuracy that is equal to those of the standard bagging
SVM and needs at worst as much time as the cascade.

acousticBinary, mmce acousticBinary, time.train
0.28- = 35— = — — —
0.26 - g g -
0.24 - o o 5=
0.22 ~ e e — 20~ == ——
cod, mmce cod, time.train
— 35—
0.15- — 3.0-
0.10- 25— —_————
0.05- —_— 2.0- et
connectBinary, mmce connectBinary, time.train
0.150— 35— — =
50145 - = 3 —_—— =
207140~ == 0 X
G318 L —_— 20-
50125- * —
g covertypeBinary, mmce covertypeBinary, time.train
E 0.10—- = e 4.0~ T —_—
B o -
T 007 — m— — — —— 30- ——
(2]
'E ijicnnl, mmce ijcnnl, time.train
i ==
< 3 —— 25—
g 8 015 4 —— -t 20-
0.008 ~ m—m— —— 15— L ————— —
miniboone, mmce miniboone, time.train
0.090 - —
0.085— = 45-
8 8§g: ‘3‘-%: —_————
0.070 - — e S — 5 ——
0.065 — == 55— —_
mnistBinary, mmce mnistBinary, time.train
= 35— == —L—
0.020 - —t— . —t—
3.0-
00157* Ll e ] 25-
0.010- | | | | | | | 2.0- | | | | | | |
O o u Q@ o «
e w 9 Q2 % U = e w 9 2 % o=
< © I ] 3 I ® < © by s 3 n @
O O
SVM version

Fig. 2: Misclassification rates and training times (the latter on logl0 scale)
for normal and parallel SVMs

The second group comnsists of connect, covertype and mnist. On these
datasets the Cascade SVM leads to results that are as accurate as those from
the classic SVM but only needs about half of the training time. The bagged
SVM on the other hand again performs several times faster but cannot achieve
the same accuracy as the other methods. So in these cases, at the cost of an at
least ten times higher training time, the further steps of the cascade actually



8 Oliver Meyer, Bernd Bischl and Claus Weihs

do increase the accuracy. The stepwise bagging SVM produces results that lie
between the cascade and the standard bagging SVMs in both accuracy and
training time. The actual boost in accuracy varies from data set to data set.
For the last dataset ijcnnl, all three methods perform very fast (cascade
15, bagging 25, stewise bagging 14 times faster) but none of them achieves an
accuracy that is as good as the classic SVM. Again the cascade outperforms
bagging w.r.t accuracy while SWB lies between the other two methods.

8 Conclusion and Outlook

We have analyzed simple parallelization schemes for parallel SVMs, namely a
bagging-like approach, the Cascade SVM and a new combination of the two.
On the considered data sets we could often observe a drastic reduction in
training time through the parallelization with only minor losses in accuracy.
Especially our new combined approach showed promising results. But still
none of the considered algorithms shows optimal results across all considered
data sets, and more work has to be done in this regard. One of the major
missing features of our method is an efficient procedure for hyperparameter
tuning that does not require many evaluations on large subsets of the train-
ing data. We have already begun preliminary experiments for this and will
continue our research in this direction.

References

BORDER, A., ERTEKIN S., WESTON, J., BOTTOU L. (2005): Fast Kernel Clas-
sifiers with Online and Active Learning. Journal of Machine Learning Research,
6, 1579-1619.

CHAWLA N. V., MOORE T. E. Jr., HALL L. O., Bowyer K. W., Kegelmeyer P.
and Springer C. (2003): Distributed Learning with Bagging-Like Performance.
Pattern Recognition Letter, 24, 455-471.

GRAF, H.P., COSATTO, E., BOTTOU, L., DURDANOVIC, I. and VAPNIK, V.
(2005): Parallel Support Vector Machines: The Cascade SVM. Advances in Neu-
ral Information Processing Systems, 17, 521-528.

KARATZOGLOU A., SMOLA A., HORNIK K., ZEILEIS A. (2004): kernlab - An
S4 Package for Kernel Methods in R. Journal of Statistical Software, 11(9),
1-20.

KOCH, P.; BISCHL, B.; FLASCH, O.; BARTZ-BEILSTEIN, T.; KONEN, W.
(2012): On the Tuning and Evolution of Support Vector Kernels. Evolution-
ary Intelligence, 5, 153-170.

SCHOELKOPF B and SMOLA A. J. (2002): Learning with Kernels: Support Vector
Machines, Regularization, Optimization, and Beyond. MIT Press, Cambridge.



