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Many different models for the analysis of high-dimensional survival data have been developed over the
past years. While some of the models and implementations come with an internal parameter tuning
automatism, others require the user to accurately adjust defaults, which often feels like a guessing
game. Exhaustively trying out all model and parameter combinations will quickly become tedious
or infeasible in computationally intensive settings, even if parallelization is employed. Therefore, we
propose to use modern algorithm configuration techniques, e. g., iterated F-racing, to efficiently move
through the model hypothesis space and to simultaneously configure algorithm classes and their
respective hyperparameters. In our application we study four lung cancer microarray data sets. For
these we configure a predictor based on five survival analysis algorithms in combination with eight
feature selection filters. We parallelize the optimization and all comparison experiments with the
BatchJobs and BatchExperiments R packages.
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1. Introduction

Survival analysis deals with the analysis of time to events. Failure times are observed
in many application fields, from demography over econometrics and technometrics to
epidemiology and medical statistics. The main interest is in quantifying the impact of
other variables on the survival time. For example, in oncology, Cox proportional hazards
models are a standard method for analyzing the prognostic impact of clinical variables.
Also fitting suitable more complex multivariate survival models and comparing their
ability to generalize with respect to unseen data is an established research topic.
However, in recent years due to the rapid development in the fields of both molecular

biology and computer science new data analysis challenges appeared. Especially the si-
multaneous reliable measurement of thousands of genetic variables, e. g., in the form of
DNA data, gene expression measurements, or proteomic measurements, has initiated the
development and application of new statistical survival analysis methods for ‘small n,
large p’ problems, where the number of variables greatly exceeds the number of observa-
tions, in this case patients.
Modern approaches include: linear methods that penalize extreme parameter estimates

with some form of shrinkage, e. g., based on a Ridge penalty [1], a Lasso penalty [2] or
on componentwise boosting [3]. The latter two have the advantage regarding subsequent
interpretation that they automatically perform variable selection. However, in compar-
isons on large gene expression data sets, Ridge regression – that retains all parameters
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in its final coefficient vector – has been demonstrated to often perform better in terms of
predictive power [4, 5].
Whereas for regression and classification tasks in the area of machine learning many

benchmark data sets are established and comprehensive comparisons between statistical
methods have been performed, in survival analysis it is still common practice to compare
only a small number of methods on a small number of data sets. There is extreme need for
objective and reproducible comparison studies in this field. Next to the mentioned penal-
ized and boosting regression approaches, survival trees and survival forests are promising
algorithms that have not been stringently compared in the high-dimensional survival
setting.
Obviously, the quality of the fitted models depends in many cases on the tuning of

algorithm parameters. The default settings of internal parameters are often not optimal
and must be tuned in tedious trials that even experts might struggle with. In addition,
prefiltering of variables has often proved to be effective. For example, in a typical gene
expression study, most genes are not related to survival and can be regarded as irrelevant
or even detrimental for its prediction. Again, a multitude of different filter methods exist,
which also require the experimenter to set respective control parameters. The exhaustive
evaluation of all algorithm and parameter combinations is infeasible, even if parallelization
is employed, especially for the high-dimensional case, as single model fits can become
computationally expensive.
A modern approach to solve this dilemma is to adaptively make all choices for the

current data set at hand through an efficient black-box optimization approach that con-
siders the desired performance measure. While in the past generic evolutionary algorithms
have been used, modern methods are specifically tailored for the characteristics of this
optimization problem, i. e., an expensive-to-evaluate objective function, noisy objective
values and mixed numerical and categorical as well as hierarchical parameter spaces. The
emerged research field has become known under the label ‘algorithm configuration’. Two
prominent methodologies are iterated racing [6] and model-based optimization [7]. The
latter has already been applied in a supervised machine learning setting in the Auto-
WEKA project [8] or for tuning kernel methods [9]. In this article we will use the former
to optimize over the survival model space.

2. Methods

This section is divided into three parts: We start by giving a brief introduction to survival
analysis and summarize the most important concepts. Subsequently, filters for variable
pre-selection are introduced. Finally, we describe the methodology of algorithm configu-
ration and the iterated F-racing method, that we use in the following experiments.

2.1 Survival analysis

In survival analysis we observe the time to a certain event (e. g., death or tumor remission)
for a group of patients. Because the predefined event is in practice often not observable for
all patients, e. g., because a patient moved towns or the event never occurred before the
end of the study, a censoring problem naturally emerges. This type of censoring is called
‘right-censoring’. Nevertheless, a censored observation still holds important information
because we can at least infer that the event did non occur before a certain point in
time. Thus one major goal and special characteristic of the following methods is to utilize
non-censored as well as censored observations.
We assume to have n patients and for each of them a survival time ti. These survival
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times are assumed to be drawn from a non-negative random variable T with density f(t)
and cumulative distribution function F (t). The probability to survive longer than t is
given by the survival function

S(t) = P ({T > t}) =

∫ ∞
t

f(u) du = 1− F (t).

With ni defined as the number of observations still under risk at ti and di defined as
the number of events at ti, the survival function can be estimated by the Kaplan-Meier
estimator

Ŝ (t) =

{
1, t < t1∏
ti≤t

(
1− di

ni

)
, t ≥ t1

.

Closely related to S(t) are the hazard function λ(t), expressing the risk for an event at
a certain point in time t conditioned on surviving until t, and the cumulative hazard
function Λ(t):

λ(t) = lim
∆t→0

S(t)− S(t+ ∆t)

∆tS(t)
=
f(t)

S(t)
, Λ(t) =

∫ t

0
λ(u) du = − logS(t).

Furthermore, let us define a non-censoring indicator variable δi, which is 1 if an event
occurred at the associated survival time ti and 0 otherwise. We assume the censoring to
be non-informative, i. e., that the censoring distribution contains no information about
the survival distribution.
In addition to the survival time and censoring information we observe for each patient

a covariate vector xi ∈ Rp. The (n× p)-matrix formed by all covariate vectors is denoted
by X. The covariates can consist of a low number of clinical features, e. g. age or sex, but
also high-dimensional gene expression data. They are used to predict the risk of an event
expressed by the hazard function λ(t) or the cumulative hazard function Λ(t).
A common performance measure to evaluate survival models is the concordance in-

dex [10]. It can be interpreted as the number of observation pairs correctly ordered
according to the risk predictor, normalized by the maximal number of such pairs, ac-
counting for censoring. Define ε as the set of all pairs (ti, tj) with i, j = 1, . . . , n where we
can, despite censoring, conclude ti < tj , ti = tj or ti > tj . Furthermore, let f(x) denote
the predicted risk of an event given covariate vector x. Now the C-index, including a
correction for ties, can be defined by

C = 1− 1

|ε|
∑

{i : δi=1}

∑
ti<tj

(
1f(xi)<f(xj) +

1

2
1f(xi)=f(xj)

)
, C ∈ [0, 1]. (1)

Values close to 0 indicate near perfect prediction, values close to 0.5 random prediction
and values close to 1 very bad predictions. The last case should not occur in practice as
simply inverting the predictions would result in well performing models. Note that some
authors define the C-Index as 1− C, which is then to be maximized, and values greater
than 0.5 indicate better performance than random prediction.

2.1.1 Cox proportional hazards model

A standard regression technique for censored data is the Cox proportional hazards
model [11] which uses the hazard function as response and a linear combination of the
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covariates:

λ (t | x) = λ0(t) exp
(
βTx

)
.

Here, λ0(·) denotes an arbitrary baseline hazard, and β = (β1, . . . , βp)
T is the vector

of unknown regression coefficients. Because λ0(·) is independent of the covariates, the
regression coefficients can be estimated by maximizing the partial log-likelihood

LL(β) =
n∑
i=1

βTxi − log

 ∑
j∈R(ti)

exp
(
βTxj

) , R (t∗) = {i | ti ≥ t∗} . (2)

The baseline hazard is determined in a second step through an estimator of the cumulative
hazard function Λ(t).

2.1.2 Penalized regression

The previously described Cox model is infeasible in high-dimensional settings (p � n),
as the maximization of LL(β) will become ill-posed due to collinearity. A well-known
solution from standard regression is to include a regularization term in the objective
criterion [1, 2]. Maximizing the partial log-likelihood (2) then yields

β̂ = argmin
β

(
−LL (β) + λreg

(
(1− α)

1

2
‖β‖22 + α ‖β‖1

))
,

where λreg ≥ 0 controls the amount and α ∈ [0, 1] the type of regularization. For α = 0
the above formula reduces to ridge regression, penalizing large values in the covariate
vector quadratically through the L2 norm, and setting α = 1 results in lasso regression
using the L1 norm. The former is known to usually yield better results, while the latter
enforces feature selection and sparsity. The mixture of both penalty types (0 < α < 1)
is called elastic net regression [12]. A good value for λreg is typically identified using
cross-validation.

2.1.3 Boosted regression

Gradient boosting is a recent reinterpretation of the well known AdaBoost algorithm
which constructs a highly competitive ensemble predictor out of weak learners by iter-
atively re-weighting the training data towards the ‘harder-to-learn’ observations. This
algorithm can be reformulated as a gradient descent method in a function space of an
additive expansion of basis functions [13]. The resulting algorithm is generic and flex-
ible in the sense that regression, classification and other supervised tasks can simply
be covered by combining the algorithm with an appropriate loss function, e. g., for sur-
vival analysis the negative partial log-likelihood for the Cox model can be used. The
mboost version [14, 15] we consider in our following experiments boosts a linear survival
model where linear basis functions defined on single covariates are added in each boost-
ing iteration (componentwise boosting). This approach is specifically well suited for the
high-dimensional setting, as stopping the boosting early results in a sparse model. We
also include a further likelihood-based boosting variant [16], implemented in the package
CoxBoost [17].
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2.1.4 Survival trees and forests

Survival trees use binary decisions to recursively split observations into groups of similar
hazard rates. A popular decision rule is to search over all features xi and their respective
possible cut points c to minimize the p-value of the logrank test [18] for the problem

H0 : λ1(t) = λ2(t) ∀t vs. H1 : ∃t : λ1(t) 6= λ2(t).

For prediction, new observations are dropped down the tree and a cumulative hazard
function Λ(t) is constructed for the respective terminal node. This Λ(t) can be used to
calculate the so-called mortality measure.
Random survival forests are constructed through the usual mechanism of fitting survival

trees on bootstrapped data samples and randomly sampling candidate feature sets for each
node. We refer the reader to [19, 20] and the respective implementation in the package
randomForestSRC for more details.

2.2 Filter

Pre-selecting features is a two-edged sword: On the one hand, one explicitly distrusts the
model by holding back potentially useful information. Furthermore, basic filter methods
are rather naive in the way they handle correlations between features, while the more
elaborate variants demand for substantial computational resources. On the other hand,
restricting the features to a reasonable subset can significantly increase the model’s per-
formance. Moreover, preliminary dimension reduction allows to employ models otherwise
not applicable and drastically decreases computational requirements in the model fitting
process. In the following we present some popular feature selection methods we tried up-
stream in the model building process. For a more complete overview we refer the reader
to [21].

2.2.1 Simple filters

For our mixture of clinical and genetic covariates, we considered three basic filter methods
which completely ignore the observed feature values and survival times:

All features: Lets all features, both clinical and genetic, pass.
Only clinical: Lets only clinical variables pass and discards all genetic variables.
Kratz: Lets all clinical variables pass and adds a predefined set of genes known to be

related to survival from literature. For the lung cancer data this set is derived
from [22] and consists of 19 genes.

2.2.2 Univariate scoring filters

A scoring filter is defined as a rule to assign each feature a numerical value which expresses
its ‘relevance’. This way the features can be ordered to select a smaller percentage of useful
candidates. We have chosen three variants which are popular in the high-dimensional
survival analysis setting:

Var: The underlying idea here is that features with low variance cannot explain the
differences in survival, thus a low variance should imply low importance or noise.
Note that this scoring rule is independent of the response.

Uni: A univariate Cox model (see 2.1.1) is separately applied for each feature and p-
values are obtained by the score test [11]. These p-values are used as importance
scores.
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C-index: The C-index calculation is performed for each feature without fitting a survival
model. In the C-index formula (1) the observations are ordered by only considering
the respective feature values. The resulting C-index is used as a score for that
feature. In contrast to p-value scoring, this filter targets the performance measure
more directly.

2.2.3 Minimum redundancy, maximum relevance

The mRMR filter [23] tries to strike a compromise between non-redundant and very rele-
vant feature sets. One option to measure redundancy is to calculate the mean correlation
between a considered feature and all other (p − 1) features: redi =

∑
i 6=j cor (xi, xj).

Instead of the correlation the mutual information criterion can be used. To assess the
relevance reli, in principle any performance measure can be used. We opted for the
C-index here. Both measures can now be combined through either a quotient reli

redi
or

difference reli− redi to form a filter score.
Note that we struggled with the existing implementations for the mRMR filter in terms

of memory consumption in parallel environments. Therefore, we wrote our own more
efficient version, which can be found at http://github.com/mllg/fmrmr.

2.2.4 Nearest shrunken centroids

The nearest shrunken centroid method [24] starts with assigning the observations to a
preliminary defined number of groups k using quantiles of the survival time. Standardized
features form class centroids which are then shrunken towards the overall centroid using a
shrinkage parameter ∆. In this process the features with the lowest distance to the overall
centroid are systematically sorted out as they provide the least information. This allows
to use nearest shrunken centroids as a filter, although the resulting number of features is
not directly controllable. The implementation can be found in the R package pamr [25].
The amount of shrinkage is typically tuned using cross-validation.

2.3 Algorithm configuration and iterated F-racing

Algorithm configuration has recently become a very active research area that was mainly
motivated by applications from discrete optimization. In these scenarios, computationally
challenging – often NP-hard – problems can be solved by a large variety of either exact
or heuristic methods. The algorithms not only vary w. r. t. their basic methodology, but
also offer an extensive number of algorithmic ‘nuts and bolts’ to influence their behavior.
Depending on the selected algorithm and its configured settings, measured performance
on problem instances often varies considerably. Therefore, an algorithm is configured for
a certain application domain by ‘tuning’ its performance, so it becomes optimal in the
mean when evaluated on a set of representative benchmark instances. This optimization
task can be a nontrivial endeavor, because the parameter space is usually not small,
one run of an algorithm might require a large amount of runtime, and the performance
evaluation is often stochastic.

2.3.1 Algorithm configuration

Let us assume we have a parametrized algorithm A(ω,θ) at our disposal. ω ∈ Ω is a
so-called instance, which is the object the algorithm is run on and supposed to solve in
a certain way. θ ∈ Θ is the configuration of the algorithm for this run. We also assume
a cost function c : Ω×Θ→ R measuring the performance of the run A(ω,θ). The usual
convention is to minimize that measure. Our task now is to obtain a configuration θ∗
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with minimal costs when these costs are averaged over all instances from Ω. As the
instance space might be infinitely large (and is in practice often accessed by sampling),
we furthermore assume a probability distribution P over Ω and a random variable I ∼ P.
Also note that the algorithm A might be stochastic in nature, which introduces a further
potential source of random variation. Therefore, the property of interest is a random
variable c(I,θ), and we have to solve the following optimization problem

θ∗ = argmin
θ∈Θ

E[c(I,θ)].

A further complicating factor is the structure of our parameter space. Usually, if our
algorithm A has l parameters, Θ will be a cross-product of l one-dimensional spaces.
But in many applications, these parameters will include categorical and integer types.
Moreover, there often is a hierarchical structure in our parameter space so that setting
a certain element is only feasible if a specific condition for the remaining values holds.
Such parameters are often called ‘dependent’ or ‘subordinate’. Often the condition is of
the form that a superordinate categorical parameter is set to a certain level. An example
of such a conditional parameter is given in Section 2.3.4.

2.3.2 F-Racing

Before we describe iterated racing, let us consider the older, simpler racing technique [26].
Here we assume Θ = {θ1, . . . ,θm} to be finite, not too large, and without ‘further struc-
ture’, i. e., we disregard that Θ is probably a cross-product of one-dimensional parameter
spaces. The task again is to find θ∗ ∈ Θ. Note that without structure on Θ and with
stochastic c(ω,θ), we have to ‘touch’ each θj a few times. In the racing algorithm we try
to reach that goal by performing as few evaluations c(ω,θj) as possible. In each iteration
we sample a new instance ω from P and evaluate all configurations {θ1, . . . ,θm} on it.
This results in a growing collection of cost values. After each iteration we search for con-
figurations θj which are significantly outperformed by at least one other configuration in
the current candidate set w. r. t. to the so far obtained performance values. This can be
accomplished through a multi-sample paired location test, and F-racing usually employs
the Friedman test combined with post-hoc analysis [27] to discover significant differences
between all pairs (hence the ‘F’ in F-racing). In this fashion the costly function evalua-
tions are focused on the more promising candidate configurations instead of the poorer
ones.
After we have spent a predefined budget B of function evaluations (or reduced Θ to

a small enough set within the current budget), we return all remaining configurations.
We will abbreviate this simple procedure as race(Θ, B). Note that we employ the statis-
tical test somewhat heuristically to reduce the number of candidate configurations in a
reasonable fashion and all issues of sequential testing are usually disregarded.

2.3.3 Iterated racing

Iterated racing [6] extends the basic racing algorithm by exploiting the specific structure of
the parameter space mentioned in Section 2.3.1 and assumes a probability distribution Q
over Θ. In an iterative procedure it now samples a set of new candidate configurations S
from Q, races the current candidates to a low number of so-called elite configurations and
adapts the distribution Q by centering it around the elites as well as reducing its spread.
The latter results in exploration in the beginning and exploitation in the later stages of
the optimization. The general procedure is outlined in Algorithm 1.
The parameter distribution Q is constructed and adapted in the following way: For

each parameter an individual independent univariate distribution is used. For numerical
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Algorithm 1 Outline of iterated F-racing.
Q ← uniform distribution on Θ
Selite ← ∅
while budget B not exhausted do

Snew ← sample(Θ, Q,Nnew) . Sample Nnew new configurations from Q
Sj ← Selite ∪ Snew
Selite ← race(Sj , Bj) . See Section 2.3.2
Q← adapt(Q,Selite) . See end of Section 2.3.3
j ← j + 1

end while
return Selite

and integer parameters a truncated normal distribution is assumed, whose support corre-
sponds to the box constraints of the respective parameter. The mean of the distribution is
taken from the respective parameter value of a randomly sampled elite configuration of the
current iteration. The standard deviation is reduced in later stages to enforce increasing
exploitation in the search process. Values for integer parameters in Snew are rounded after
sampling. For categorical parameters a discrete probability distribution is used where the
mass of the observed values in the elite configurations are increased after each iteration.
Dependent parameters are handled by sampling the values of non-dependent parameters
first, then by sampling the values of those subordinate parameters whose requirements
are satisfied and so on.
For further details, e. g., exact formulas for Q, how the number of new candidates Nnew

as well as the budget Bj of the race are set or some algorithmic extensions like a restart
mechanism, we refer the reader to [6], which also documents the irace R package that
we have used.

2.3.4 Further remarks

In our case an algorithm is a survival analysis method, possibly combined with a fea-
ture filter, although in general one is certainly not restricted to feature filtering but
can optimize any general machine learning operation chain with this approach. θ spec-
ifies all choices and respective hyperparameters. Note that we encode the basic survival
model class and filter technique as categorical parameters and make all other parameters
subordinate to these choices, so from that perspective we only configure one ‘super’ sur-
vival analysis algorithm. Hence, that algorithm has a parameter vector θ which looks like
(filter=[filter-name], filter-parameters, model=[model-name], model-parameters)T , where
the first and third entry are non-dependent parameters and the second and fourth are
dependent ones. For example, the parameter selecting the redundancy measure of our
fmrmr filter only makes sense if filter = fmrmr holds. The reader is already referred to
Table 2 which defines our complete parameter space.
As we want to determine the best model for one data set individually, instances are

defined as subsampled training-test splits for one data set. c(ω,θ) is then defined as the
resulting C-index when the model is fit on the training set and evaluated on the test set.
Note that we will embed the model selection with iterated F-racing into an outer cross-
validation. Therefore an instance is more precisely a training-test split of the training set
of the current cross-validation fold.
One could also consider the possibility to configure for a whole domain of similar data

sets. We will not follow this approach in this work, although it is certainly a valid goal.
Usually, one obtains better results in machine learning when one does model selection
for individual data sets and performing model selection across different data sets (at
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Table 1. Characteristics of lung cancer data sets.

GEO ID observations events clinical covariates genetic covariates

GSE31210 204 30 age, gender, smoker, stage 54 675
GSE4573 129 66 age, gender, stage 22 283
Uppsala 196 145 gender, smoker 54 675
Jacob 440 235 age, gender, stage 22 283
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Figure 1. Kaplan-Meier estimators of survival times.

least as an optimization problem) is much less frequently considered. Especially, in our
application, it is uncertain whether, e. g., the same percentage of features is optimal across
different data sets.

3. Data sets

We picked four publicly available lung cancer data sets with genome wide gene expression
measurements and additional clinical information. Data sets ‘GSE31210’, ‘GSE4573’ and
‘GSE37745’ (in the following named ‘Uppsala’) were extracted from the Gene Expression
Omnibus [28] database. The fourth data set, which we name ‘Jacob’, is taken from a
website referenced in [29]. In addition to survival times and gene expressions (measured
on the Affymetrix HGU1333a or HGU133 Plus 2.0 microarray chip and normalized us-
ing RMA [30]), we selected some important clinical covariates for each data set. The
main criterion for inclusion was the proportion of missing values, as we eliminated all
incomplete observations before applying any method. Table 1 gives an overview of the
major characteristics of all four data sets, Figure 1 displays their estimated survival func-
tions. As we can clearly see, patients in the data sets ‘GSE4573’, ‘Uppsala’ and ‘Jacob’
have a similar probability to survive, while patients in the ‘GSE31210’ data set have a
considerably better prognosis.

4. Experimental setup

On all previously described data sets we evaluate through a three-fold cross-validation
(CV). This means that the data sets are randomly partitioned into three blocks which
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act as the respective test set per CV iteration. The remaining two blocks are combined
and used as a training set to fit the model. Models are always compared based on the
same cross-validation splits to reduce variance in their performance differences. All our
models are evaluated by the previously defined concordance index using either the linear
predictor Xtestβ̂train (regression based models) or the mortality (random survival forest)
as risk predictions.
Cross-validation is a standard resampling procedure for model evaluation and compari-

son in general supervised machine learning and also survival analysis [31, 32]. The reason
we opt for a rather low number of folds is explained by the fact that we need a large
enough number of samples in the test set to evaluate the concordance index in a mean-
ingful way. Splitting the data in a ‘two thirds for training, one third for testing’ fashion
is also standard in that regard.
We run the following experiments: First, we cross-validate four reference (or baseline)

models that a reasonable experimenter might try on our considered data sets. Note that
all of the proposed models come with an internal cross-validation based auto-tuning of
the arguably most important parameters. These baseline models are:

CoxPH: A Cox proportional hazards model on the clinical covariates from package
survival [33, 34].

Ridge: A ridge regression, where the penalty parameter is determined by an inner cross-
validation on the training set, from package glmnet [35].

mboost: Gradient boosting from package mboost [14, 15], where the ‘family’ parameter
was set to ‘CoxPH’, the number of boosting steps was determined by an inner
CV on the training set and all other settings were left at their defaults.

CoxBoost: Likelihood-based boosting from package coxboost [17], where the number
of boosting iterations and the penalty parameter are determined by an inner CV
on the training set and all other settings are left at their defaults.

We now compare these baseline results against models found by configuring over a com-
prehensive parameter space, including different survival analysis models, filter techniques
and their respective control parameters. All parameters and their constraints are displayed
in Table 2. A budget of 10 000 function evaluatios (model fits) is granted to irace. In
the high-dimensional setup this demands for considerable computing power. Therefore
we patched irace to roll out the computations on a high-performance cluster using the
BatchJobs and BatchExperiments packages [36]. Nevertheless, runtime requirements are
very heterogeneous: The time to evaluate a single point can range from a few seconds to
several hours, largely influenced by the amount of filtering. The benefit of parallelization
is therefore limited as we periodically have to wait for the slowest evaluation in each rac-
ing iteration. Excessive memory requirements justified one more constrained not listed in
Table 2: The random survival forest is only applied whenever less than 1000 covariates
remain after filtering and the C-index is set to the worst possible value otherwise.
It should be noted that we mix continuous, integer and categorical parameters and also

have a hierarchical structure where almost every parameter either depends on the setting
of the model or filter parameter.
For each CV iteration we run the irace configurator on the training set of the outer cross

validation. Irace then again subsamples this training set in its internal racing procedure
an adaptive number of times. After our budget is spent, the optimizer recommends an
optimized parameter vector θ∗, we fit the model on the complete CV training set and
evaluate the predictions on the CV test set. Note that this results in three different model
configurations (θ∗1,θ

∗
2,θ
∗
3) per data set. The outer CV splits used for tuning are exactly

the same as the ones used for our baseline models.
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Table 2. Overview of parameter space for configuration.

Name Description Type Box Constraints / Values

filter Type of filter categorical all_features, only_clinical, kratz
var, uni, cindex, fmrmr, pamr

model Type of model categorical coxboost, glmnet
rfsrc, penalized, mboost

use.clinical filter = uni logical TRUE, FALSE
filter.perc Percentage of features continuous 0 – 0.3333

For filter ∈ {var, uni, fmrmr}

fmrmr
redundance Measure of redundancy categorical mi, pearson
combine Combination of rel and red categorical difference, quotient

pamr
ngroup.survival Number of groups integer 2 – 3

coxboost
stepsize.factor Sets the step-size modification factor continuous 0.1 – 2
penalty Update penalty for single coeff per step continuous 0.1 – 1000

penalized
penalty Type of penalty categorical L1, L2

glmnet
alpha Penalty control continuous 0 – 1

rfsrc
splitrule Rule used for splits in tree categorical logrank, logrankscore
nodesize Min. size of terminal node integer 1 – 10
ntree Number of trees in forest integer 1 – 2000
bootstrap Bootstrap protocol categorical by.root, by.node, none

mboost
m Boosting iterations integer 1 – 500
nu Step size / shrinkage continuous 0 – 1
family Loss function categorical CoxPH, Lognormal

Weibull, Loglog

Table 3. Mean C-indices for baseline models and configuration approach,
cross-validated with three folds.

Data set CoxBoost CoxPH mboost Ridge Configurator

GSE31210 0.24 0.35 0.24 0.23 0.18
GSE4573 0.47 0.45 0.46 0.47 0.44
Uppsala 0.49 0.54 0.46 0.49 0.42
Jacob 0.33 0.34 0.33 0.33 0.31

5. Results

Table 3 displays the obtained results for all four baseline methods and our tuning ap-
proach. We can draw two important conclusions: First, although the data sets are from
the same domain, fitting a predictive model on these data sets is of unequal difficulty.
This is clear just by comparing the performance measures of the Cox proportional haz-
ards models across data sets. Second, tuning boosts performance on all data sets, but to
a different extent. Compared to the best reference model, the performance gain on data
sets ‘GSE31210’ and ‘Uppsala’ is very visible. On data sets ‘GSE4573’ and ‘Jacob’ on
the other hand, the tuning seems to have less impact. Yet the differences are significant
which is demonstrated later in this section.
Table 4 lists the configurations θ∗ found by irace for each outer cross-validation fold

and its estimated C-index from the iterated racing procedure on the CV training set. The
combinations of selected filters and models reveal some information about the data sets:
For the ‘Jacob’ and ‘GSE4573’ data sets genetic covariates seem less important. The filter
completely discards them or leaves only a very small fraction for the model. Then the
choice of model apparently has a lower impact on performance, or, in other words, many
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Table 4. Results of configuration per data set and outer cross-validation fold. The displayed Ĉ refers to the estimated
C-index of the configurator, i. e., not on the outer test set, but from the repeated splits of the outer training set.

Data Set Fold Filter Model Ĉ

GSE31210 1 uni glmnet 0.14
perc=0.317, use.clinical=TRUE alpha=0.003

GSE31210 2 all_features glmnet 0.14
alpha=0.01

GSE31210 3 fmrmr glmnet 0.24
perc=0.324, relevance=cindex alpha=0.017
redundance=mi, combine=quotient

GSE4573 1 fmrmr penalized 0.41
perc=0.023, relevance=cindex penalty=L2
redundance=pearson, combine=quotient

GSE4573 2 var rfsrc 0.37
perc=0.044 splitrule=logrank, nodesize=3

ntree=1842, bootstrap=none
GSE4573 3 var rfsrc 0.32

perc=0.029 splitrule=logrankscore, nodesize=7
ntree=1562, bootstrap=by.root

Uppsala 1 fmrmr penalized 0.43
perc=0.009, relevance=cindex penalty=L2
redundance=mi, combine=difference

Uppsala 2 fmrmr penalized 0.38
perc=0.269, relevance=cindex penalty=L2
redundance=pearson, combine=difference

Uppsala 3 fmrmr penalized 0.44
perc=0.108, relevance=cindex penalty=L2
redundance=mi, combine=difference

Jacob 1 only_clinical mboost 0.28
m=179, nu=0.344, family=CoxPH

Jacob 2 kratz coxboost 0.27
stepsize.factor=1.888, penalty=275.772

Jacob 3 fmrmr glmnet 0.30
perc=0.061, relevance=cindex, alpha=0.888
redundance=mi, combine=difference

models are equally good on the remaining subset of features. On the ‘GSE31210’ data set
in the contrary, the clinical covariates are either not that useful or the genetic covariates
hold much information. In all folds many thousand genes are passed to an elastic net with
ridge regularization clearly dominating lasso regularization. The ‘Uppsala’ case is similar
in that regard: A pure ridge regression on mRMR pre-selected covariates is the favorable
approach here.
To judge the performance gain of the tuning approach the three-fold CV is repeated

30 times for each data set. All reference models as well as the three models with the
preliminary found configurations (θ∗1,θ

∗
2,θ
∗
3) are build on each of the 30 · 3 = 90 training

sets. In the next step the best performing reference model w. r. t. to the average C-
index across all test sets is selected for each data set. The best reference model is then
compared with each tuned model in a pairwise fashion using a two-sided Wilcoxon test
for location shift. Table 5 lists mean C-indices and resulting p-values. Tuning yields,
with one exception on the ‘Jacob’ data, always significantly better results than any of
the considered reference models. A further noteworthy aspect revealed by the repetitive
evaluation is given by the fact that mboost outperforms the other reference models on
three of four data sets.

6. Conclusions

We have demonstrated how a well-known approach from algorithm configuration can suc-
cessfully be applied to model selection in high-dimensional survival analysis. Our tuned
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Table 5. Mean C-Indices C̄ for reference and tuned models evaluated in 30 repetitions of a 3-fold cross-
validation. p-values derived from the paired, two-sided Wilcoxon test for location shift: C-indices of best
performing reference model vs. C-indices of respective configuration.

Data set C̄coxboost C̄coxph C̄mboost C̄ridge C̄θ∗
1

C̄θ∗
2

C̄θ∗
3

pθ∗
1

pθ∗
2

pθ∗
3

GSE31210 0.26 0.32 0.26 0.27 0.18 0.19 0.18 <0.001 <0.001 <0.001
GSE4573 0.51 0.46 0.53 0.51 0.48 0.42 0.41 0.002 <0.001 <0.001
Uppsala 0.49 0.53 0.48 0.50 0.42 0.42 0.42 <0.001 <0.001 <0.001
Jacob 0.31 0.33 0.31 0.31 0.33 0.31 0.30 <0.001 0.631 <0.001

models perform significantly better than the considered reference models. Furthermore,
many interesting data set characteristics, otherwise inaccessible in high-dimensional set-
tings, can be derived by examining the configurations.
Unfortunately, the community did not yet agree on a set of benchmark data sets which

makes proper scientific comparisons harder than they should be. Only a few articles exist
that contain extensive and rigorous benchmark comparisons for survival analysis. One
notable exception is [37] which is based on a modelling competition on an exceptionally
large breast cancer data set. The combined computational and human resources of all
participants led to a comprehensive benchmark study. The rules for accessing this data
set are rather restrictive. We plan to obtain it in order to have another source of results
for comparison.
One option to mitigate at least the technical problems of having a machine-readable

collection of data sets, experimental descriptions, code and results is the recently intro-
duced OpenML [38] project. This projects strives to enable users to organize all relevant
parts of a machine learning experiment on an easily query-able online platform and offers
integration into many popular machine learning toolkits such R, Weka, RapidMiner and
KNIME.
Regarding our current experimental setup, we suspect that the budget of 10 000 func-

tion evaluations per configuration run might still be set too low, but as the combined
experiments already took several weeks of sequential computing time, we could not in-
crease this any further for the current publication due to time-constraints. We are also
interested in comparing the iterative racing approach with a model-based optimization
similar to the ones in [8, 9].
In our presented approach, we have only configured survival analysis models for indi-

vidual data sets. It might also be a worthwhile endeavor to try to configure (parts of)
the modeling for a whole domain of survival analysis data sets, e. g., (lung) cancer gene
expression data. Another valid option to explore – as proposed in [39] – is to include the
runtime cost of the considered configuration into the search, as we usually are under the
constraint of a limited, fixed time budget for the whole optimization process.
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