
Analyzing the BBOB Results
by Means of Benchmarking Concepts

O. Mersmann olafm@statistik.tu-dortmund.de
Chair of Computational Statistics, TU Dortmund University, Germany

M. Preuss mike.preuss@uni-muenster.de
Chair of Information Systems and Statistics, University of Muenster, Germany

H. Trautmann trautmann@wi.uni-muenster.de
Chair of Information Systems and Statistics, University of Muenster, Germany

B. Bischl bischl@statistik.tu-dortmund.de
Chair of Computational Statistics, TU Dortmund University, Germany

C. Weihs weihs@statistik.tu-dortmund.de
Chair of Computational Statistics, TU Dortmund University, Germany

Abstract
We present methods to answer two basic questions that arise when benchmarking optimization
algorithms. The first one is: which algorithm is the “best” one? and the second one: which
algorithm should I use for my real world problem? Both are connected and neither is easy to
answer. We present a theoretical framework for designing and analyzing the raw data of such
benchmark experiments. This presents a first step in answering the aforementioned questions.
The 2009 and 2010 BBOB benchmark results are analysed by means of this framework and
we derive insights regarding the answers to the two questions. Furthermore, we discuss how
to properly aggregate rankings from algorithm evaluations on individual problems into a con-
sensus, its theoretical background and which common pitfalls should be avoided. Finally, we
address the grouping of test problems into sets with similar optimizer rankings and investigate
whether these are reflected by already proposed test problem characteristics, finding that this is
not always the case.

Keywords
evolutionary optimization, benchmarking, exploratory landscape analysis, BBOB test set, mul-
tidimensional scaling, consensus ranking

1 Introduction

In the domain of stochastic optimization, the available theory is still too limited to predict the
performance of different algorithms on more than the most simple objective functions. There-
fore, benchmarking plays a vital role in developing and comparing these types of algorithms.
The BBOB 2009 and 2010 (Hansen et al. (2009a) and Hansen et al. (2009b) and follow-ups for
2010) results provide the most sophisticated benchmarking data currently available, and their
specific strength lies in the inclusion of many classic and modern optimization algorithms from
fields outside of evolutionary computation. Although a result summary has already been pub-
lished by the organizers (Auger et al. (2010)), much more can be learned from the available
data when inspected from a slightly different angle, namely the one of benchmarking theory
(see Sec. 2), a long since existing branch of statistics. A first attempt in this direction has been
Mersmann et al. (2010a), solely considering the BBOB 2009 data. In this work, we aggregate

c©2010 by the Massachusetts Institute of Technology Evolutionary Computation x(x): xxx-xxx

O. Mersmann, M. Preuss, H. Trautmann, B. Bischl, and C. Weihs

the data from 2009 and 2010 and expand the portfolio of applied statistical techniques. Due to
the high number of algorithms from both conferences (64) it also became inevitable to group
the algorithms according to their main idea, choosing only one representative of each group for
comparison as documented in Sec. 3.3. Such grouping is of course subjective, however we have
tried to be as fair as possible, so as to obtain a good overview of the capabilities of the different
classes of algorithms currently available on the BBOB test problems.

Who is the winner of an optimization competition and does this question make any sense?
Without clearly qualifying one method as the overall winner, Hansen et al. (2010) suggest to
look at such measures as the number of problems solved satisfactorily over the number of eval-
uations. This perspective implies that the most successful algorithms can solve the largest pos-
sible fraction of problems in the shortest time, thereby suggesting a default method which shall
be employed if no problem knowledge is available. There may however be algorithms which
are especially well suited for problems that cannot be solved well by the winning method. One
may further argue that some problem properties are available even for a black-box problem of
unknown structure, e.g. its dimensionality. Or preliminary runs with standard (gradient based)
methods might have hinted at a unimodal or multimodal structure of the function landscape.

Thus, we can state that: a) looking at different classes of problems makes sense, and b)
choosing a best algorithm (possibly for only a subgroup), requires to find a ranking for the
aggregation of the data of the according test functions. The latter is made possible by using
consensus ranking methods which we introduce in Sec. 2.2. Unfortunately, there cannot be
a consensus ranking method that satisfies a complete set of reasonable, intuitive prerequisites
simultaneously. Instead, we will have to make a subjective choice which will influence our
interpretation of the resulting consensus. These methods, while not particularly well known in
the EC community, are often used in other disciplines and should not be dismissed as exotic.
Examples of the applications of consensus methods in everyday life are sporting events where
several rankings are produced by a panel of judges, races etc. and then averaged to find the
winner of the competition.

The ultimate goal of a comparison of methods on a benchmark suite should be to detect
which optimization algorithm to use for a given practical problem, but clearly, not every imag-
inable problem can be represented by a benchmark. Additionally, benchmarking also suits the
purpose of algorithm development as one may try to enhance a method that does not work too
well on some problems. Therefore it is essential that we are able to determine the difficulty
that a problem poses for an algorithm. In any case, some generalization from single problems
to problem groups is necessary. The BBOB test set is partitioned into five groups according to
very general properties. But do these problem groups match the abilities of the optimization
algorithms under test well? Or shall they be restructured according to other criteria? We treat
this question in Sec. 3.5, coming to the conclusion that the groups are largely well chosen, but
with some exceptions.

The assignment of problems to groups is also interesting from another perspective: If one
is confronted with a new problem of which not much is known, it would be desirable to auto-
matically detect some of its properties and then sort it into an existing group for which good
optimization algorithms are available. This is our long term goal, and we have coined the term
exploratory landscape analysis (ELA) to describe this methodology. First approaches are pre-
sented in Mersmann et al. (2010a) and further work in this direction can be found in Mersmann
et al. (2011). In this work however, we concentrate on the manual analysis of the BBOB work-
shop data to obtain a “ground truth”, to which future ELA approaches can be compared to
(Sec. 3). Finally, we provide a summary and some conclusions in Sec. 5.

2 Evolutionary Computation Volume x, Number x

Analyzing the BBOB Results by Means of Benchmarking Concepts

Define
problem domain

Choose q
quality indicators

Choose t test functions

Choose k algorithms

Rank algorithms

Analyze resultsFind consensus Deploy algorithm

Figure 1: Flow chart describing the steps involved in a benchmark experiment.

2 Benchmarking

Benchmarking experiments and comparisons are set up in order to evaluate the performance
of different algorithms on given problem classes. To derive an overall ranking of all the algo-
rithms in a benchmark experiment is one of the common goals. This has several uses, the most
prominent one being the identification of an “overall best” algorithm. Without loss of generality
we will focus on optimization algorithms in the following description. A specific position in an
overall ranking will in general be dependent on the rank aggregation method employed and there
is no consensus method which can be considered optimal as has been known in econometrics
for several decades (Arrow, 1950). So all methods presented here will have to be a trade-off
between three basic properties which any optimal consensus method should satisfy.

Fig. 1 schematically visualizes the general setup of what we call a benchmark experiment.
We will see that its outcome strongly depends on the chosen performance measures and ranking
procedures (Hornik and Meyer, 2007; Mersmann, 2009; Mersmann et al., 2010b). The definition
of a problem domain together with a set of t test functions is a key step. Benchmarking results
can only be generalized to the considered domain, and even this is not admissible if the functions
are not chosen systematically and therefore represent the problem domain properly. Ideally, this
would be guaranteed by applying the design of experiments methodology to the most important
features which characterize the function types, but this is a nontrivial task for several reasons.
First of all, the relationship between these features and the measured performance of an algo-
rithm is generally not linear. Secondly and more importantly, this would require that we have a
method to randomly sample from the set of all functions which satisfy some constraints on their
characteristics. This is currently an unsolved issue.

To do this performance assessment, q (ideally stochastically independent) quality indicators
or performance measures are chosen to judge different aspects of algorithm performance and
optimization quality. Then, a set of k algorithms is chosen for the benchmark. This set should
be diverse and care should be taken not to over-represent a certain class of algorithms since this
may bias the consensus rankings derived later on.

Since the outcome of the algorithms under test is usually stochastic, they are compared by
aggregating r independent runs. Appropriate choices of r depend on the expected difference in
quality compared to the variance of the observed quality indicator values. A good rule of thumb
would be a value between 10 and 25 repetitions, but during the analysis it may become appar-
ent that more runs are required to adequately differentiate between the algorithms (Mersmann,
2009). Here the trade-off is between the speed of running such an experiment and the accuracy
of the results.

Our k algorithms will now be run r times for each of the t test functions resulting in r × t

Evolutionary Computation Volume x, Number x 3

O. Mersmann, M. Preuss, H. Trautmann, B. Bischl, and C. Weihs

Scenario Summary statistic (si) R

Best case quality max{Ii,1, . . . , Ii,r} ≥
Average case quality r−1

∑r
j=1 Ii,j ≥

Median quality median(Ii,1, . . . , Ii,r) ≥
Worst case quality min{Ii,1, . . . , Ii,r} ≥
Consistent quality (r − 1)−1

∑r
j=1(Ii,j − Īi)2 ≤

Table 1: List of summary statistics and order relations R.

values of the q quality indicators for each algorithm. Using these values we can derive individual
rankings of the algorithms for each combination of a quality indicator and a test function (see
Sec. 2.1). An overall (consensus) ranking can then be generated from the individual rankings or
from subsets of these. Different methods for this are introduced and discussed in Sec. 2.2.

2.1 Individual Ranking

Benchmarking theory is often based on the theoretical framework of relations and orders (Hunter
(2008)) from which a formal definition of a ranking R of a set of items A = {a1, a2, . . . , ak}
can be derived as a weak order over the set A. For ai, aj ∈ A we say ai is better than or equal
to aj and denote this by ai � aj iff aj Rai. If aiRaj and aj Rai, then we say ai and aj are
tied and denote this by ai ∼ aj . If R is a linear order, we refer to the corresponding ranking as
a strict ranking.

Initially, without loss of generality, we will consider the case of a fixed test function f
and quality criterion I to be maximized. For example, I could be the dominated hypervolume
indicator (HV, Zitzler and Thiele (1998)) in multiobjective evolutionary optimization or the
accuracy a single-objective evolutionary algorithm has reached after a fixed number of function
evaluations. If we only had two algorithms, a1 and a2, then we could define � by saying
a1 � a2 (a1 is better than or equal to a2) if I(a1(f)) ≥ I(a2(f)). Generalizing this result to
a higher number of algorithms is straightforward in that we use the order induced by I on the
algorithms as our ranking. However, due to the inherent stochastic nature of the algorithms,
I(ai(f)) becomes a random variable with unknown distribution. We will therefore estimate
some properties of this distribution, usually the expected value or some quantile, from the r
repetitions we performed. Choosing a good summary statistics requires an initial study of the
distribution of the quality indicator. An example of such an analysis is given in Mersmann et al.
(2010c) where the distribution of the HV is studied for different evolutionary multiobjective
algorithms. Among other characteristics it is shown to be unimodal in most cases.

The usage of a summary statistic of the indicator distribution together with the classic
“greater than or equal” (≥) or “less than or equal” (≤) relation is a straightforward approach
to generate a linear order on the algorithms under test. Table 1 lists suitable summary statis-
tics assuming fixed samples of r quality indicator values Ii = (Ii,1, . . . , Ii,r). However, any
uncertainty in these statistics is neglected which could lead to perturbed ranking results where
the extent of the error depends on the variance of the indicator distribution. Another possibility
is to use statistical hypothesis tests (Mood et al., 1974) to decide if the locations of two quality
indicator distributions are different in some sense. Caution is in order here because this ap-
proach can lead to a relation � that is not transitive and antisymmetric. More details are given
in Mersmann (2009) and Mersmann et al. (2010b).

4 Evolutionary Computation Volume x, Number x

Analyzing the BBOB Results by Means of Benchmarking Concepts

2.2 Consensus Ranking
If we want to find the best algorithm out of a given set by using the individual rankings obtained
using the methodology described above, we need to aggregate these into a single ranking. This is
called finding a consensus among the individual rankings and the result is a consensus ranking.
As mentioned earlier, there is no single best consensus method for rankings and we will elaborate
on this here.

One can postulate several criteria that a “best” consensus method cm should fulfill (Arrow
(1950)):

1. A consensus method cm that takes into account all rankings instead of mimicking one
predetermined ranking is said to be non-dictatorial.

2. A cm that, given a fixed set of rankings, deterministically returns a complete ranking is
called a universal consensus method or is said to have a universal domain.

3. A cm fulfills the independence of irrelevant alternatives criterion, short IIA criterion, if
given two sets of rankings R = {r1, . . . , rn} and T = {t1, . . . , tn} in which for every
i ∈ {1, . . . , n} the order of two algorithms a1 and a2 in ri and ti is the same, the resulting
consensus rankings rank a1 and a2 in the same order. IIA means that introducing a further
algorithm does not lead to a rank reversal between any of the already ranked algorithms
which is a very strict requirement.

4. A cm which ranks an algorithm higher than another algorithm if it is ranked higher in a
majority of the individual rankings for which the consensus ranking is sought, fulfills the
majority criterion.

5. A cm is called Pareto efficient if given a set of rankings in which for every ranking an
algorithm ai is ranked higher than an algorithm aj , the consensus also ranks ai higher than
aj .

Unfortunately, all criteria cannot be met simultaneously because the IIA criterion and the major-
ity criterion are incompatible if we assume a non-dictatorial consensus method. Thus, consensus
approaches will yield different results with respect to the criteria chosen to be fulfilled. At this
point one might ask why we even bother to find a consensus if it will always be a trade-off
between the above criteria. The reason is, that while it may not be optimal in some sense, it
still gives us insight into which algorithms might be worth further investigation and which al-
gorithms perform rather poorly. However, we will have to take care that no (accidental or even
intentional) manipulation of the consensus takes place. This might easily happen if the IIA is not
fulfilled - which it usually is not. Therefore simply adding similar algorithms to the benchmark
can increase the chance of a rank reversal.

Generally, we can differentiate between positional and optimization based methods. Posi-
tional methods calculate sums of scores s for each algorithm ai over all rankings and result in an
ordering as follows: for t test functions and q quality indicators considered where ri,j denotes
the ranking induced by the i-th function and the j-th comparison or quality indicator:

ai � aj ⇐⇒ si > sj , ai ∼ aj ⇐⇒ si = sj , with si =

t∑
k=1

q∑
`=1

s(ai, rk,`). (1)

The simplest score function assigns a value of one to the best algorithm in each ranking while all
other algorithms get a value of zero. Though this is somehow intuitive, undesirable consensus
rankings can occur. Consider the situation with two different rankings of three algorithms, i.e.

Evolutionary Computation Volume x, Number x 5

O. Mersmann, M. Preuss, H. Trautmann, B. Bischl, and C. Weihs

R1 : a1 � a2 � a3 as well as R2 : a3 � a2 � a1. After calculating the scores the consensus
would be [a1 ∼ a3] � a2 although the rankings are directly opposed and we would intuitively
expect to have [a1 ∼ a2 ∼ a3].

The Borda count method (de Borda (1781)) accounts for this drawback and assigns an
algorithm one point for each algorithm that is not better than the algorithm considered, i.e.
sBC(ai, r) =

∑
i6=j I(ai � aj) which in the case of no ties reduces to the ranks of the data.

Unfortunately, the Borda method does not fulfill the majority or the IIA criterion. It is still a
popular consensus method because it can be easily implemented and understood. The main crit-
icism voiced in the literature is that it implicitly, like all positional consensus methods, assumes
a distance between the positions of a ranking – which is equally spaced in case of the Borda
method.

Optimization based methods on the other hand require a distance function (see Cook and
Kress (1992) for on overview) between different rankings which quantifies how much two rank-
ings deviate from each other. Central to this is a notion of betweenness, expressed by pairwise
comparisons. I.e. a ranking r2 lies between r1 and r3 if for all pairs of algorithms either r2
agrees with r1 or r3 on the relative order of the pair, or r1 and r3 have conflicting orderings for
the pair and r2 declares the pair to be tied. From this, we obtain a geometry on the set of all
possible rankings and can ask for something like a mean (minimizing squared loss) or median
(minimizing absolute loss) consensus ranking.

If we add the requirement of non-negativity, symmetry and the triangle inequality to the list
of properties our distance function should fulfill, we can formalize the above notion of a mean
or median consensus by taking the distance measure as our loss function and then minimizing
over all admissible consensus rankings C:

arg min
c∈C

L(c) =

t∑
i=1

q∑
j=1

d(ri,j , c)
` ` ≥ 1. (2)

The consensus ranking is then given by the ranking whose loss L is minimal. Setting ` = 1
results in what is called a median consensus ranking and ` = 2 results in a mean consensus
ranking.

Kemeny and Snell (1972) postulated meaningful axioms for distance functions which can
be proven to uniquely lead to the symmetric difference (SD) which counts the cases where
ai � aj is contained in one of the relations but not the other:

dSD(r1, r2) := ~1′|~Ir1 − ~Ir2 |~1 (3)

where ~1 is the k dimensional one vector, ~Iri the incidence matrix belonging to the relation that
corresponds to the ranking ri and |·| denotes the element wise absolute value. SD/L denotes
the SD approach for the set of all linear and SD/O for the set of all partial orders.

Unfortunately, we cannot give a general recommendation regarding the introduced con-
sensus methods (Saari and Merlin (1997)) as each method offers a different trade-off of the
consensus criteria. The SD/L and SD/O methods meet the majority criterion and thus cannot
meet the IIA criterion simultaneously. However, on real data they rarely result in rank reversals
if algorithms are added or dropped. The Borda count (BC) method does not fulfill either of these
criteria. Saari and Merlin (1997) show that the SD method always ranks the Borda winner above
the Borda loser and that the Borda method always ranks the SD winner above the SD loser.

It is important to notice that consensus rankings generally do not admit nesting in a hierar-
chical structure. For example, separate consensus rankings could be of interest for test functions
with specific features, e.g. high multimodality or convexity. While this certainly is a valid and

6 Evolutionary Computation Volume x, Number x

Analyzing the BBOB Results by Means of Benchmarking Concepts

meaningful approach one has to keep in mind that an overall consensus of these separate consen-
sus rankings does not necessarily have to equal the consensus ranking directly generated based
on all individual rankings.

3 BBOB Analysis

In the following sections we will apply the benchmarking framework which was presented in
the previous section to the joint results of the 2009 (Hansen et al., 2010) and 2010 BBOB open
benchmark (Auger et al., 2010). Our aim will not be to identify the “best” algorithm but try
to characterize the performance of different algorithm classes. This will allow us to deduce a
small subset of algorithms in Sec. 3.3 which together might form the basis of a practitioner’s
black-box optimization toolbox.

3.1 Benchmark Setup
In this section we will give a short overview of the BBOB 2009 and 2010 open benchmarks.For
a detailed description of the experimental setup see Hansen et al. (2009a). The general setup
used by the BBOB team follows the methodology depicted in Fig. 1 but instead of choosing
the k algorithms themselves, since this is an open benchmark, researchers are invited to submit
results for their algorithms. It uses a balanced and unbiased sample of the published set of test
functions from the field of black-box optimization. Their characteristics have been studied by
the BBOB team to ensure that different aspects and difficulties are covered.

To assess the performance of an algorithm, the BBOB team proposes the use of the so called
expected running time. This measure estimates the expected number of function evaluations
required to achieve an accuracy of ε > 0. For a given ε the ERT is defined as

E {RT (ε)} := E {N succ
eval (ε)}+

1− πsucc(ε)

πsucc(ε)
E
{
N fail

eval(ε)
}
, (4)

where N succ
eval (ε) denotes the number of function evaluations until the algorithm reaches the de-

sired accuracy of ε, N fail
eval(ε) denotes the number of function evaluations until the algorithm

terminates without reaching the desired accuracy level (unsuccessful run) and πsucc(ε) is the
probability of a successful run. We will estimate the ERT from the r runs performed by every
algorithm on each test function by plugging in the empirical equivalents of the unknown param-
eters. For a thorough motivation of the ERT see Hansen et al. (2005). There are certainly other
measures and ways to characterize algorithm performance. One could for example ask for the
accuracy attained after a fixed budget of function evaluations. In this analysis we will however
focus on the ERT and restrict ourselves to the performance metric originally suggested by the
BBOB team.

In order to estimate the ERT, each contestant is required to submit 15 runs of his or her
algorithm for each of the 24 test functions. It was required to submit results for 2, 3, 5, 10 and
20 dimensional parameter spaces. Results for 40 dimensional parameter spaces were optional.
The experimenter may therefore have to perform up to 15 × 24 × 6 = 2160 runs. The results
of each run are automatically stored in a file by the BBOB framework. From this file it is
possible to infer the number of function evaluations used for almost any accuracy level ε. There
is one small difference in the way the 15 runs are composed between the 2009 and 2010 BBOB
instance. In 2009, the 15 runs were divided among 5 different test function instances1 for each
of which 3 runs had to be performed. In 2010, instead of 5 instances, 15 instances with just one
run per instance were required.

1Slight reparameterizations of the test function obtained by rescaling, rotating or otherwise transforming the param-
eter vector before applying the function.

Evolutionary Computation Volume x, Number x 7

O. Mersmann, M. Preuss, H. Trautmann, B. Bischl, and C. Weihs

Algorithm Number of runs

ALPS 15 – 45
BFGS 15 – 30
(1+1)-CMA-ES 15 – 30
DIRECT 5 – 5
AVGNEWUOA 15 – 30
MA-LS-CHAIN 15 – 29
MCS 15 – 30
(1+1) ES 15 – 26
Artificial Bee Colony 15 – 33

Table 2: Algorithms for which there are deviations from the 15 runs per test function / dimension rule. The
second column shows the minimal and maximal number of runs performed per test function / dimension
combination.

The way the BBOB team analyses the results turned in by the contestants is different from
what we propose in Sec. 2. We will therefore refer the reader to Hansen et al. (2010) for a
description of their methodology and the results they obtain. Instead we will use the raw data,
graciously provided by BBOB team on their website2, to conduct an analysis based on the
methods proposed in Mersmann et al. (2010b).

Before we begin with the analysis we would like to mention a few discrepancies between
the actual data available and what should be included in a contestant’s submission. Not all con-
testants have turned in results for each dimension or test function. This is legitimate but hinders
some analysis. For example very few algorithm runs in 40D are available. We can only specu-
late if the other contestants did not turn in results because their algorithms did not perform well
in this dimension or because they did not have enough time / resources to perform the additional
runs. Another problem is that some results do not contain the required 15 runs per test function
/ dimension combination. In fact, some authors turned in more runs than required! These find-
ings are summarized in Tab. 2. One should note that DIRECT is a deterministic method which
was submitted in 2009 when three replications for each function were required by the BBOB
rules. It therefore does abide by the rules since each repetition would have produced the same
result. To avoid any biasing of the results we have opted to use a form of stratified sampling
that either chose 15 unique instances (2010 submission) or three runs from five instances (2009
submission) for those submissions with more than 15 runs. Other issues encountered include
backup files in the submitted archives and differing directory structures between contestants. In
the future it would be desirable to standardize the layout of the submitted data to ease external
analysis.

3.2 Individual Rankings
Initially, algorithm rankings for each test problem and dimension combination are generated for
all accuracy levels 10−i for i = 3, 4, 5, 6, 7, 8. An exemplary visualization of rankings obtained
for the maximum accuracy level of 10−8 is shown in Fig. 2. All rankings are obtained by ranking
based on the ERT using the ≤ (i.e. smaller is better) relation.

From the plot, we can see that it is not advisable to simultaneously analyze all competing
algorithms. Obviously, figures are not very meaningful for 55 algorithms due to information
overload. Due to this limitation and the inherent risk of including multiple variants of one al-
gorithm in an analysis, as described in the previous section, algorithm groups are defined which
consist of a number of very similar algorithms, better denoted algorithm variants. For instance,
there are 17 variants of the CMA-ES which differ only in population size and restart strategy. In

2http://coco.gforge.inria.fr/doku.php

8 Evolutionary Computation Volume x, Number x

Analyzing the BBOB Results by Means of Benchmarking Concepts

f_01 f_02 f_03

f_04 f_05 f_06

f_07 f_08 f_09

f_10 f_11 f_12

f_13 f_14 f_15

f_16 f_17 f_18

f_19 f_20 f_21

f_22 f_23 f_24

2D
3D
5D

10D
20D

2D
3D
5D

10D
20D

2D
3D
5D

10D
20D

2D
3D
5D

10D
20D

2D
3D
5D

10D
20D

2D
3D
5D

10D
20D

2D
3D
5D

10D
20D

2D
3D
5D

10D
20D

0 20 40 0 20 40 0 20 40

rank (lower is better)

di
m

en
si

on

algorithm

IPOP−ACTCMA−ES
BIPOP−CMA−ES
Nelder−Doerr
(1+2_m^s) CMA−ES
IPOP−CMA−ES
(1,4_m^s) CMA−ES
(mu+lambda) CMA−ES
IPOP−SEP−CMA−ES
(1+1) CMA−ES
fminsearch
iAMALGAM
FULLNEWUOA
AVGNEWUOA
(1,4_m) CMA−ES
NEWUOA
GLOBAL
BFGS
(1,4^s) CMA−ES
(1,4) CMA−ES
VNS
AMALGAM
MCS
MOS
MA−LS−CHAIN
DE−F−AUC
DEuniform
(1,2_m^s) CMA−ES
Local Search − Rosenbrock
NBC−CMA
(1,2_m) CMA−ES
PM−AdapSS−DE
G3PCX
DIRECT
One−Fifth Variant3
(1,2) CMA−ES
ALPS
(1,2^s) CMA−ES
DE−PSO
Cauchy−EDA
PSO
EDA−PSO
Line Search − fminbnd
DASA
CMA−EGS
Artificial Bee Colony
Line Search − STEP
PSO Bounds (2010)
POEMS
oPOEMS
nPOEMS
RCGA
Simple GA
SPSA
BAYEDA
RANDOMSEARCH

Figure 2: Parallel coordinate plot for each function, showing the rank of each algorithm as the number of
dimensions rise for the accuracy level of 10−8.

Evolutionary Computation Volume x, Number x 9

O. Mersmann, M. Preuss, H. Trautmann, B. Bischl, and C. Weihs

Sec. 3.3 we discuss why an inclusion of all such algorithm variants can extremely bias result-
ing consensus rankings. Therefore we will choose a “best” variant from each algorithm group
and use this algorithm as a representative for further analysis and especially the final consensus
rankings.

An aggregation on the test problem level would be possible as well. In Hansen et al. (2009b)
the BBOB test problems are grouped into predefined problem classes with specific properties as
a) unimodal separable problems (UM - Sep., f1-f4) , b) unimodal low or moderate conditioned
problems (UM - Low C, f6-f9), c) high conditioned and unimodal problems (UM - High C,
f10-f14), d) multi-modal problems with adequate global structure (MM - adeq. GS, f15-f19),
and e) multi-modal problems with weak global structure (MM - weak GS, f20-f24). As already
shown in Mersmann et al. (2010a) and obvious from Fig. 2 the algorithm performance is not
consistent enough within the specified function groups to justify the selection of a reduced set
of representative test problems.

Some general statements about the algorithms’ performance can however be extracted from
Fig. 2. It is evident 3 that there is a change in the general performance of the algorithms as the
dimension rises, e.g. not surprisingly the performance of gradient based methods like BFGS
in most cases deteriorates with increasing dimension. On the other hand, there is an opposite
tendency for the CMA-ES variants. Only rarely the set of the best ranked algorithms is quite
stable across all dimensions as for the sphere problem f1 and the rotated Rosenbrock problem
f9 for instance. Interestingly, a few algorithms, e.g. Harmony Search, perform even worse than
Monte Carlo search for some combinations of dimension and test problem.

Specifically, the differences within dimensions 5 – 20 and within 2 and 3 are much smaller
than the differences between these two groups. This has already been pointed out by Mersmann
et al. (2010a). Therefore, detailed performance analysis of a carefully selected set of best per-
forming algorithms should be conducted separately for these two dimension classes. In Sec. 3.5
we perform such an analysis for the higher dimensional class as this is the most interesting one
in our view.

3.3 Algorithm groups and representatives
The high number of more than 50 algorithms (including variants) present in the combined BBOB
data set of 2009 and 2010 over-strains the capacities of tables and figures, as can easily be seen
in Fig. 2. We therefore need to group the algorithms and continue only with the ones ranked best
in each category. This requires a grouping criterion, for which we chose algorithmic similarity,
so that all optimizers relying on the same base mechanism will be put into the same group.
While this appears straightforward e.g. for the different variants of the CMA-ES, it is much
less self-evident for the group of so called hybrid optimization methods. In this case, the use
of multiple search paradigms itself is the underlying principle. Another problem is the different
size of the obtained groups. For this reason, and also because there is a difference in the use of
non-trivial restart heuristics, we have cut the largest group (CMA-ES) in two: the simple CMA-
ES variants and the more complex ones (dubbed CMA-hybrid). Even so, the former still has
11 members. In stark contrast to that, the gradient and random search groups contain only one.
This may seem a bit unfair, but it is a necessary step in the analysis to mitigate the possibility
of inadvertently changing the ranking of two algorithms by just adding another variant of one
of them. This risk was previously pointed out in the section on benchmarking. Moreover, we
finally strive for a small number of best algorithms which is sufficient to, in some sense, cover
all test problems. We expect that on very different problems, very different algorithms perform
best, and not variants of the same algorithm. If this were the case, we would not call these

3Note, that because of the difficulty of visualizing the results at this stage on just one page, we have made larger
individual plots available at http://ptr.p-value.net/ecj13

10 Evolutionary Computation Volume x, Number x

Analyzing the BBOB Results by Means of Benchmarking Concepts

algorithms variants but assume that the effect we see stems from tuning. Finally, we think that
answers to more general questions such as: “Shall I use an estimation of distribution algorithm
(EDA) or a gradient method on problem x?” are of higher interest than the choice of the exact
variant, which may also be seen as a different parametrization in many cases. By selecting a
representative out of each class we would like to support this view. This position shall however
not be misunderstood as discouragement of algorithm variant development. We would merely
like to point out that a new variant should initially be benchmarked against the other available
ones before competing against an algorithm from a different class.

In the following, we list the chosen groups and their algorithms, together with a short
explanation concerning the conjunctive concept. Fig. 3 and Fig. 4 display consensus rankings
within the algorithm groups over the required target precision and BBOB function groups as
described in Sec. 3.2. Note that for selecting the representative, we rely on the Borda count
consensus as the most intuitive approach. In case the rankings over precisions and function
groups lead to different results, we allow for two representatives. Tab. 3 summarizes the Borda
and SD/L consensus results for the algorithm groups for the lowest and highest precision value
considered.
CMA-ES: (1,2 m) CMA-ES, (1,2 mˆs) CMA-ES, (1,2) CMA-ES, (1,2ˆs) CMA-ES, (1,4 m)

CMA-ES, (1,4 mˆs) CMA-ES, (1,4) CMA-ES, (1,4ˆs) CMA-ES, (1+1)-CMA-ES,
(1+2 mˆs) ES, (µ+ λ) CMA-ES
This group contains all simple variants of the CMA-ES that do not employ a specific restart
heuristic (other than randomly placed restarts). They can be seen as reparametrizations of
the original CMA-ES (which is not in the test set). The representative of this group is the
(1,2 mˆs) CMA-ES that strongly dominates the other CMA-ES versions on the unimodal
function groups.

CMA-hybrid: BIPOP-CMA-ES, CMA-EGS, IPOP-ACTCMA-ES, IPOP-CMA-ES, IPOP-
SEP-CMA-ES, NBC-CMA
In contrary to the group above, these CMA variants all employ non-trivial restart heuristics
that change the population size or determine the search space positions for restarts. The
group is represented by the IPOP-ACTCMA-ES.

DE: DE-F-AUC, DE-PSO, DEuniform, PM-AdapSS-DE
Here we find all methods that may largely be considered as differential evolution (DE)
algorithms. It is represented by DE-F-AUC which clearly dominates over most precision
values.

EDA: AMALGAM, BAYEDA, Cauchy-EDA, iAMALGAM
This group comprises the estimation of distribution (EDA) methods, and its representative
is the iAMALGAM which ranks best over 4 of the 5 function groups.

GA/ES: ALPS, DASA, G3PCX, One-Fifth Variant3, RCGA, Simple GA, SPSA
Algorithms which largely follow the design principles of a genetic algorithm or an evolu-
tion strategy and do not use the covariance matrix adaptation are collected here. This group
is represented by G3PCX as it ranks best over 3 of the 5 problem groups.

Global Search: AVGNEWUOA, DIRECT, FULLNEWUOA, GLOBAL, MCS, NEWUOA
These algorithms take explicit measures to aim for a good covering of the search space. Its
representative is FULLNEWUOA because it is a good average performer.

Gradient: BFGS
This group contains the only ‘pure’ gradient method of all competing algorithms, BFGS,
which also represents it.

Hybrid: EDA-PSO, MA-LS-CHAIN, MOS, nPOEMS, oPOEMS, POEMS, VNS
This group consists of methods that rely on multiple different search paradigms and can
therefore be considered hybrid. We also put memetic algorithms here. The group is repre-

Evolutionary Computation Volume x, Number x 11

O. Mersmann, M. Preuss, H. Trautmann, B. Bischl, and C. Weihs

SD/L Borda

1e−08
1e−07
1e−06
1e−05
1e−04
0.001

1e−08
1e−07
1e−06
1e−05
1e−04
0.001

1e−08
1e−07
1e−06
1e−05
1e−04
0.001

1e−08
1e−07
1e−06
1e−05
1e−04
0.001

1e−08
1e−07
1e−06
1e−05
1e−04
0.001

1e−08
1e−07
1e−06
1e−05
1e−04
0.001

1e−08
1e−07
1e−06
1e−05
1e−04
0.001

1e−08
1e−07
1e−06
1e−05
1e−04
0.001

1e−08
1e−07
1e−06
1e−05
1e−04
0.001

1e−08
1e−07
1e−06
1e−05
1e−04
0.001

1e−08
1e−07
1e−06
1e−05
1e−04
0.001

C
M

A
−

E
S

C
M

A
−

hybrid
D

E
E

D
A

G
A

/E
S

G
lobal S

earch
G

radient
H

ybrid
Local S

earch
P

S
O

R
andom

3 6 9 3 6 9

rank (lower is better)

pr
ec

is
io

n

algorithm

CMA−ES: (1,2_m) CMA−ES
CMA−ES: (1,2_m^s) CMA−ES
CMA−ES: (1,2) CMA−ES
CMA−ES: (1,2^s) CMA−ES
CMA−ES: (1,4_m) CMA−ES
CMA−ES: (1,4_m^s) CMA−ES
CMA−ES: (1,4) CMA−ES
CMA−ES: (1,4^s) CMA−ES
CMA−ES: (1+1) CMA−ES
CMA−ES: (1+2_m^s) CMA−ES
CMA−ES: (mu+lambda) CMA−ES
CMA−hybrid: BIPOP−CMA−ES
CMA−hybrid: CMA−EGS
CMA−hybrid: IPOP−ACTCMA−ES
CMA−hybrid: IPOP−CMA−ES
CMA−hybrid: IPOP−SEP−CMA−ES
CMA−hybrid: NBC−CMA
DE: DE−F−AUC
DE: DE−PSO
DE: DEuniform
DE: PM−AdapSS−DE
EDA: AMALGAM
EDA: BAYEDA
EDA: Cauchy−EDA
EDA: iAMALGAM
GA/ES: ALPS
GA/ES: DASA
GA/ES: G3PCX
GA/ES: One−Fifth Variant3
GA/ES: RCGA
GA/ES: Simple GA
GA/ES: SPSA
Global Search: AVGNEWUOA
Global Search: DIRECT
Global Search: FULLNEWUOA
Global Search: GLOBAL
Global Search: MCS
Global Search: NEWUOA
Gradient: BFGS
Hybrid: EDA−PSO
Hybrid: MA−LS−CHAIN
Hybrid: MOS
Hybrid: nPOEMS
Hybrid: oPOEMS
Hybrid: POEMS
Hybrid: VNS
Local Search: fminsearch
Local Search: Line Search − fminbnd
Local Search: Line Search − STEP
Local Search: Local Search − Rosenbrock
Local Search: Nelder−Doerr
PSO: Artificial Bee Colony
PSO: PSO
PSO: PSO Bounds (2010)
Random: RANDOMSEARCH

Figure 3: Consensus rankings within the chosen algorithm groups, according to target value precision

12 Evolutionary Computation Volume x, Number x

Analyzing the BBOB Results by Means of Benchmarking Concepts

SD/L Borda

MM − adeq. GS

MM − weak GS

UM − High C

UM − Low C

UM − Sep.

MM − adeq. GS

MM − weak GS

UM − High C

UM − Low C

UM − Sep.

MM − adeq. GS

MM − weak GS

UM − High C

UM − Low C

UM − Sep.

MM − adeq. GS

MM − weak GS

UM − High C

UM − Low C

UM − Sep.

MM − adeq. GS

MM − weak GS

UM − High C

UM − Low C

UM − Sep.

MM − adeq. GS

MM − weak GS

UM − High C

UM − Low C

UM − Sep.

MM − adeq. GS

MM − weak GS

UM − High C

UM − Low C

UM − Sep.

MM − adeq. GS

MM − weak GS

UM − High C

UM − Low C

UM − Sep.

MM − adeq. GS

MM − weak GS

UM − High C

UM − Low C

UM − Sep.

MM − adeq. GS

MM − weak GS

UM − High C

UM − Low C

UM − Sep.

MM − adeq. GS

MM − weak GS

UM − High C

UM − Low C

UM − Sep.

C
M

A
−

E
S

C
M

A
−

hybrid
D

E
E

D
A

G
A

/E
S

G
lobal S

earch
G

radient
H

ybrid
Local S

earch
P

S
O

R
andom

3 6 9 3 6 9

rank (lower is better)

pr
ec

is
io

n

algorithm

CMA−ES: (1,2_m) CMA−ES
CMA−ES: (1,2_m^s) CMA−ES
CMA−ES: (1,2) CMA−ES
CMA−ES: (1,2^s) CMA−ES
CMA−ES: (1,4_m) CMA−ES
CMA−ES: (1,4_m^s) CMA−ES
CMA−ES: (1,4) CMA−ES
CMA−ES: (1,4^s) CMA−ES
CMA−ES: (1+1) CMA−ES
CMA−ES: (1+2_m^s) CMA−ES
CMA−ES: (mu+lambda) CMA−ES
CMA−hybrid: BIPOP−CMA−ES
CMA−hybrid: CMA−EGS
CMA−hybrid: IPOP−ACTCMA−ES
CMA−hybrid: IPOP−CMA−ES
CMA−hybrid: IPOP−SEP−CMA−ES
CMA−hybrid: NBC−CMA
DE: DE−F−AUC
DE: DE−PSO
DE: DEuniform
DE: PM−AdapSS−DE
EDA: AMALGAM
EDA: BAYEDA
EDA: Cauchy−EDA
EDA: iAMALGAM
GA/ES: ALPS
GA/ES: DASA
GA/ES: G3PCX
GA/ES: One−Fifth Variant3
GA/ES: RCGA
GA/ES: Simple GA
GA/ES: SPSA
Global Search: AVGNEWUOA
Global Search: DIRECT
Global Search: FULLNEWUOA
Global Search: GLOBAL
Global Search: MCS
Global Search: NEWUOA
Gradient: BFGS
Hybrid: EDA−PSO
Hybrid: MA−LS−CHAIN
Hybrid: MOS
Hybrid: nPOEMS
Hybrid: oPOEMS
Hybrid: POEMS
Hybrid: VNS
Local Search: fminsearch
Local Search: Line Search − fminbnd
Local Search: Line Search − STEP
Local Search: Local Search − Rosenbrock
Local Search: Nelder−Doerr
PSO: Artificial Bee Colony
PSO: PSO
PSO: PSO Bounds (2010)
Random: RANDOMSEARCH

Figure 4: Consensus rankings within the chosen algorithm groups, according to function group

Evolutionary Computation Volume x, Number x 13

O. Mersmann, M. Preuss, H. Trautmann, B. Bischl, and C. Weihs

sented by the MOS algorithm which achieved the top rank for 2 of 5 cases.
Local Search: fminsearch, Line Search - fminbnd, Line Search - STEP, Local Search - Rosen-

brock, Local Search: Nelder-Doerr
Here, the direct search and related methods are collected that explicitly aim for best possi-
ble local optimization and do not possess an explicit global search mechanism. However,
Nelder-Doerr employs an evolutionary component by selecting the best of a population of
local search instances. Nevertheless, it appears more similar to a (repeated) local search
algorithm than to a hybrid or global optimization algorithm. It is also the representative of
this group as it ranks best over 3 of the 5 problem groups.

PSO: Artificial Bee Colony, PSO, PSO Bounds (2010)
This group consists of nature-inspired swarm algorithms, namely different particle swarm
optimization methods (PSO) and the artificial bee colony (ABC) method. It is represented
by the PSO method which ranks best for most precisions and problem groups.

Random: RANDOMSEARCH
Only one random search algorithm has entered the BBOB instances, and its search
paradigm is different enough from all others to justify its own group. It also represents
the group.

Consensus Best Algorithm
Group Method # Alg. Precision 10−3 Precision 10−8

CMA-ES SD/L 11 (1+2 mˆs) CMA-ES (1+2 mˆs) CMA-ES
CMA-ES Borda 11 (1+2 mˆs) CMA-ES (1+2 mˆs) CMA-ES
CMA-hybrid SD/L 6 IPOP-ACTCMA-ES IPOP-ACTCMA-ES
CMA-hybrid Borda 6 IPOP-ACTCMA-ES IPOP-ACTCMA-ES
DE SD/L 4 DE-F-AUC DE-F-AUC
DE Borda 4 DE-F-AUC DE-F-AUC
EDA SD/L 4 iAMALGAM iAMALGAM
EDA Borda 4 iAMALGAM iAMALGAM
GA/ES SD/L 7 G3PCX G3PCX
GA/ES Borda 7 G3PCX G3PCX
Global Search SD/L 6 AVGNEWUOA AVGNEWUOA
Global Search Borda 6 FULLNEWUOA FULLNEWUOA
Gradient SD/L 1 BFGS BFGS
Gradient Borda 1 BFGS BFGS
Hybrid SD/L 7 MOS VNS
Hybrid Borda 7 MOS MOS
Local Search SD/L 5 Nelder-Doerr Nelder-Doerr
Local Search Borda 5 Nelder-Doerr Nelder-Doerr
PSO SD/L 3 PSO PSO
PSO Borda 3 PSO PSO
Random SD/L 1 RANDOMSEARCH RANDOMSEARCH
Random Borda 1 RANDOMSEARCH RANDOMSEARCH

Table 3: Consensus ranking results for each algorithm group at the lowest / highest studied precision. Only
the best algorithm is shown for each consensus method and as can be seen there are both groups in which
the two consensus methods are in agreement and those where they do not agree.

Representative algorithms for groups
As motivated in the previous section, we need to choose a few representatives from each algo-
rithm group. This was done by calculating the Borda consensus over all algorithms in each group
for the accuracy levels 10−3 and 10−8 and choosing the best algorithm in each consensus as one
of the representatives. All further analysis will also restrict itself to the two afore mentioned

14 Evolutionary Computation Volume x, Number x

Analyzing the BBOB Results by Means of Benchmarking Concepts

● ●●●●●●●●●●●●●● ●●●●●●● ●

●

●

●●●●●●●●●●●●●● ●● ●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

Nelder−Doerr

(1+2_m^s) CMA−ES

FULLNEWUOA

IPOP−ACTCMA−ES

iAMALGAM

BFGS

MOS

DE−F−AUC

G3PCX

PSO

RANDOMSEARCH

3 6 9

rank (lower is better)

al
go

rit
hm

● ●●●●●●● ●●

●

●

●

●

●

●

●

●

●

●

●

IPOP−ACTCMA−ES

(1+2_m^s) CMA−ES

BFGS

iAMALGAM

Nelder−Doerr

FULLNEWUOA

MOS

DE−F−AUC

G3PCX

PSO

RANDOMSEARCH

3 6 9

rank (lower is better)
al

go
rit

hm

Figure 5: Box-plots showing the distribution of the rank of each of best algorithms for all 2D and 3D (left)
and 5D to 20D (right) rankings. The red dot marks the mean of the ranks which coincides with the Borda
score of the algorithm if a consensus was formed. The algorithms are therefore ordered by the Borda
consensus. The vertical lines mark the median of the ranks.

precisions. Why do we use the Borda and not the SD/L consensus for this decision? The Borda
consensus method captures our intent to find an algorithm that performs “above average” over all
functions when compared to the other algorithms in the group. The SD/L method would prefer
an algorithm that performs well on the majority of the test functions but may fail catastrophi-
cally on a minority. The chosen 11 algorithms for the further analysis are therefore (1+2 mˆs)
CMA-ES, IPOP-ACTCMA-ES, DE-F-AUC, iAMALGAM, G3PCX, FULLNEWUOA, BFGS,
MOS, Nelder-Doerr, PSO and RANDOMSEARCH. We will call this group of algorithms the
best algorithms in the following sections. Do not confuse this with the mythical best algorithm
mentioned in Sec. 2.

To get an initial idea of how these best algorithms compare to each other we can look at
the distribution of their ranks. For each test function and dimension we obtain two rankings of
the best algorithms. One for an accuracy level of 10−3 and one for an accuracy level of 10−8.
We can now extract the rank (i.e. the position) of each algorithm in each of these rankings and
then look at this distribution. Two things we would want to see in a good algorithm are a low
mean rank which means it is often one of the better algorithms and, as a secondary goal, a low
variance of the ranks implying that its performance does not vary much with the test function.
Since we cannot expect the algorithms to perform equally well in 2D and 3D when compared
to higher dimensions we will look at these distributions separately. The results can be seen as
boxplots in Fig. 5. We can instantly assess that there are differences between the 2D – 3D and
the 5D – 20D distributions, as expected. In fact, in low dimensions it appears that a different set
of algorithms performs well when compared to the high dimensional set.

Finally we can also look at an overall (Borda) consensus of the algorithms over all test

Evolutionary Computation Volume x, Number x 15

O. Mersmann, M. Preuss, H. Trautmann, B. Bischl, and C. Weihs

functions, dimensions and the two precision levels. This gives us

IPOP-ACTCMA-ES � Nelder-Doerr � (1+2 mˆs) CMA-ES � iAMALGAM �
FULLNEWUOA � BFGS � MOS � DE-F-AUC � G3PCX � PSO � RANDOMSEARCH

More interesting are the Borda consensus rankings for the same scenario as above but not over all
test functions. Instead for each function group as defined in Hansen et al. (2009b) a consensus is
calculated over all dimensions and accuracy levels. This gives the following consensus rankings:

Unimodal - Separable:
Nelder-Doerr � BFGS � (1+2 mˆs) CMA-ES � FULLNEWUOA � IPOP-ACTCMA-ES

� iAMALGAM � MOS � DE-F-AUC � PSO � G3PCX � RANDOMSEARCH

Unimodal - Low Contrast:
FULLNEWUOA � IPOP-ACTCMA-ES � BFGS � (1+2 mˆs) CMA-ES � Nelder-Doerr

� iAMALGAM � G3PCX � DE-F-AUC � MOS � PSO � RANDOMSEARCH

Unimodal - High Contrast:
iAMALGAM � IPOP-ACTCMA-ES � (1+2 mˆs) CMA-ES � Nelder-Doerr � BFGS �

DE-F-AUC � FULLNEWUOA � MOS � G3PCX � PSO � RANDOMSEARCH

Multimodal - weak Global Structure:
Nelder-Doerr � FULLNEWUOA � BFGS � (1+2 mˆs) CMA-ES � G3PCX � MOS �

iAMALGAM � IPOP-ACTCMA-ES � DE-F-AUC � PSO � RANDOMSEARCH

Multimodal - adequate Global Structure:
IPOP-ACTCMA-ES � MOS � DE-F-AUC � iAMALGAM � Nelder-Doerr �

(1+2 mˆs) CMA-ES � PSO � FULLNEWUOA � G3PCX � BFGS � RANDOMSEARCH

Here we can see that while Nelder-Doerr is only second in the overall ranking, it dominates
two function groups, whether the IPOP-ACTCMA-ES leads only one. Additionally, FULL-
NEWUOA and iAMALGAM, who do not play an important role in the overall ranking, each
dominate one function group. It is obvious that knowing the problem type is very important for
selecting the right algorithm.

After looking at these different ways to aggregate the results we might ask if there is a
natural grouping of functions that arises from the performance of the algorithms. To answer this
question and gain further insight into the performance characteristics of the set of best algorithms
we will need some tools from statistics which will be introduced next.

3.4 Statistical Methods
In the following section we apply different methods from data analysis and statistics to visualize
and interpret the BBOB results. These statistical tools will be briefly introduced in this section.
Much more detailed explanations can be found in the cited literature, and we recommend Hastie
et al. (2001) as a general reference, which covers all the required material.

Multidimensional scaling (MDS) is a visualization technique, embedding objects xi for
i ∈ {1, . . . , n}, from a high-dimensional into a lower dimensional euclidean space (usually 2D
or 3D). MDS operates only on a matrix of given distances (e.g. euclidean) or dissimilarities
δi,j between the objects. Note, that MDS can therefore be applied even when only the δi,j are

16 Evolutionary Computation Volume x, Number x

Analyzing the BBOB Results by Means of Benchmarking Concepts

known, but not the xi themselves. The embedding is performed in such a way that the distances
are maintained as closely as possible by solving the following optimization problem:

min
z1,...,zn

∑
i 6=j

(||zi − zj || − δi,j)2 .

Here, the zi ∈ Rk are the low-dimensional mappings of the original xi. The optimization
problem is usually solved by a gradient descent algorithm.

Partitioning around medoids (PAM) is an unsupervised data mining method, which clus-
ters unlabeled objects xi into sets of neighbored items. Again, we assume to have a matrix of
distances δi,j between all objects xi and xj available. At each stage of the algorithm a set of k
representatives (the medoids) is maintained. As this is just a subset of the original data points,
their set of indices {i1, . . . , ik} suffices. The target function to minimize is defined as

k∑
j=1

∑
C(i)=j

δi,ij ,

where C(i) = arg minj δi,ij is the index of the nearest representative to observation xi.
In the initial phase the medoids are chosen in a greedy, iterative way to reduce the target

function value. Afterwards, the algorithm exchanges in each step until convergence a medoid
with a non-medoid so that the target function is maximally reduced.

The number of clusters can be decided by running PAM several times with different values
for k and calculating the so called average silhouette width. This width defines a numerical
measure for each observation and reflects how well it fits into its selected cluster C(i) instead of
any other cluster. For a formal definition see Kaufman and Rousseeuw (1990). The parameter k
is then chosen by selecting the number of clusters with the highest silhouette width.

Classification and Regression Trees (CART) Breiman et al. (1984) try to find a mapping
between a d-dimensional input spaceX = X1× . . .×Xd (where the individual features are usu-
ally measured on a metric, ordinal or nominal scale) and a set of finite labels Y = {y1, . . . , yg}.
The mapping is of the form of a binary tree, where every node represents a univariate rule xi < c
(or xi = c if Xi is nominal). These rules are generated in a greedy, top-down fashion by ana-
lyzing a finite set of learning examples (xi, yi) ∈ X × Y . The best rule for the current node k
is found by first considering the so-called impurity

i(k) = 1−
g∑

j=1

pk(j)2

of the node. This is maximal, if all classes in the data which reach node k occur with equal rela-
tive frequency pk(j). Note, that our definition above is also called the Gini index and alternative
measures of node impurity are available. The rule for node k is selected now in such a way that
the difference in impurity between k and its subnodes (created by this new rule) is maximal:

δ(k) = i(k)− pli(l)− pri(r)

Here i(l) and i(r) are the impurities of the left and right subnode of k, and pl and pr are the
percentages of data which move from the parent node r to its children l and r respectively.

Usually, a large tree is grown w.r.t. some stopping criterion, such as the minimal node size,
and then simplified in a second stage by cost-complexity pruning.

Evolutionary Computation Volume x, Number x 17

O. Mersmann, M. Preuss, H. Trautmann, B. Bischl, and C. Weihs

●●

●

●

●●

●●●●●●●
●

●

−10

0

10

20

30

−40 −20 0 20

D1

D
2

funcGroup

● MM − adeq. GS

MM − weak GS

UM − High C

UM − Low C

UM − Sep.

●
●
●

●

●
●

●

●●
●

●

●
●

●

●

●
●

●

●

●

−10

0

10

20

30

−40 −20 0 20

D1

D
2

cluster

● 1

2

3

4

Figure 6: Plot of the two dimensional projection recovered from the dissimilarity matrix of the rankings
of the best algorithms in 5 to 20 dimensions. Each point represents a single test function / dimension
combination. On the left the points are colored according to the function group the test function belongs
to and on the right the color shows which cluster was assigned to the test function by the PAM procedure.

3.5 Characterizing performance of the ”best group”
In Sec. 3.3 we chose a subset of algorithms from the original dataset called the best algorithms
and used consensus methods to find a best algorithm for some dimension or some subset of the
test functions. In this section we will focus on understanding the structure the algorithms reveal
in our set of test functions. Consequently, we will restrict ourselves to what we consider the
current sweet spot of black-box optimization, that is to 5-20 dimensional problems.

For these we would like to know if the similarity between test functions that is implied in
the five function groups defined by the BBOB team is also present in the rankings. Therefore, we
need means to characterize similarity or distance between rankings. Recall that we introduced
such a distance metric for the optimization based consensus method in Sec. 2. Using the SD
metric proposed there we can calculate a similarity matrix between all the individual rankings.
We can visualize this matrix using multi-dimensional scaling and also try to cluster the rankings
based on their relative distance to each other using PAM. Using the average silhouette width as
the cluster index, the optimal number of clusters into which to partition the rankings is 4. This
is already a departure from the 5 function groups proposed. To see how well the two groupings
of the test functions agree we plot the 2D representation of the dissimilarity matrix as recovered
by the MDS in Fig. 6, and color the points according to their group memberships.

Even though the MDS is only an approximate representation of the distance matrix, we
can see that the clusters are also visible in the plots. On the other hand, the function groups do
not seem to be reflected in the clustering or the MDS plot. We therefore infer that the function
grouping which was provided by the BBOB team does not coincide with similar algorithm
behavior. Instead we have empirically determined the four new groups shown in Table 4.

What is missing is a set of rules describing these clusters. From the list above it is almost
impossible to deduce anything about what defines a cluster. Some functions are spread between
different clusters, all clusters contain some 5, some 10 and some 20 dimensional functions. So
instead of trying to describe the clusters based on the function name and dimension, we will
try to abstract away from the concrete test function and replace each test function by a set of
features that describe the function. These were first proposed by Mersmann et al. (2010a) and
are shown in Tab. 5. They are again a subjective way of categorizing each function. We then
train a classification tree on the obtained data set by using the function properties as the features
and the cluster as our target class. The resulting tree is displayed in Fig. 7 and permits two

18 Evolutionary Computation Volume x, Number x

Analyzing the BBOB Results by Means of Benchmarking Concepts

Function 5D 10D 20D Function 5D 10D 20D

f01 1 1 1 f13 2 3 2
f02 1 2 2 f14 2 2 2
f03 3 3 4 f15 3 3 3
f04 4 4 4 f16 3 3 3
f05 1 1 1 f17 3 3 3
f06 2 3 3 f18 3 3 3
f07 2 2 2 f19 3 3 4
f08 1 1 1 f20 3 3 4
f09 1 1 1 f21 1 1 1
f10 2 2 2 f22 1 1 1
f11 2 2 2 f23 3 4 4
f12 1 2 2 f24 3 4 –

Table 4: Table showing the cluster that was assigned to each function / dimension combination. Note that
for f24 in 20 dimensions we do not have enough data to assign a cluster.

multimodality
p < 0.001

1

none {high, low, medium}

variable scaling
p < 0.001

2

{high, low} none

Node 3 (n = 24)

1 2 3 4

0
0.2
0.4
0.6
0.8

1
Node 4 (n = 6)

1 2 3 4

0
0.2
0.4
0.6
0.8

1

multimodality
p < 0.001

5

{low, medium} high

Node 6 (n = 15)

1 2 3 4

0
0.2
0.4
0.6
0.8

1
Node 7 (n = 26)

1 2 3 4

0
0.2
0.4
0.6
0.8

1

Figure 7: Decision tree describing the relationship between the features defined in Tab. 5 and the clusters
found by PAM. Each node of the tree describes a decision. The variable on which the decision is based is
given in the node and the values are the labels on each edge. The leaves of the tree describe the relative
frequence of each cluster in the data that, according to the decision rules, belong in that leaf. High values
mean that it is likely that a function with these properties would belong to the respective cluster. For
example, all test functions which are in leaf node 4, i.e. that have no multimodality, and no variable
scaling, belong to cluster 1.

interesting observations.
First of all, we have no way of differentiating between cluster 3 and cluster 4 using the

defined features. This is surprising and might lead to the discovery of new characteristics of the
test functions which might explain the difference between the two clusters. The main difference
between the remaining cluster one and cluster two is that cluster one has no variable scaling and
cluster two is unimodal.

We conclude by presenting a Borda consensus over the four groups discovered using the
cluster analysis. Recall that these four groups are already fairly homogeneous w.r.t. the al-
gorithm rankings since their distance to each other, in the SD metric, is small. The resulting
consensus rankings are:

Cluster 1:
FULLNEWUOA � BFGS � Nelder-Doerr � (1+2 mˆs) CMA-ES � IPOP-ACTCMA-ES

� G3PCX � iAMALGAM � MOS � DE-F-AUC � PSO

Evolutionary Computation Volume x, Number x 19

O. Mersmann, M. Preuss, H. Trautmann, B. Bischl, and C. Weihs

Function multim. gl.-struc. separ. scaling homog. basins gl.-loc. plat.

1: Sphere none none high none high none none none
2: Ellipsoidal separable none none high high high none none none
3: Rastrigin separable high strong high low high low low none
4: Büche-Rastrigin high strong high low high med. low none
5: Linear Slope none none high none high none none none

6: Attractive Sector none none none low med. none none none
7: Step Ellipsoidal none none none low high none none small
8: Rosenbrock low none none none med. low low none
9: Rosenbrock rotated low none none none med. low low none

10: Ellipsoidal high conditioned none none none high high none none none
11: Discus none none none high high none none none
12: Bent Cigar none none none high high none none none
13: Sharp Ridge none none none low med. none none none
14: Different Powers none none none low med. none none none

15: Rastrigin multimodal high strong none low high low low none
16: Weierstrass high med. none med. high med. low none
17: Schaffer F7 high med. none low med. med. high none
18: Schaffer F7 moderately ill-cond. high med. none high med. med. high none
19: Griewank-Rosenbrock high strong none none high low low none

20: Schwefel med. deceptive none none high low low none
21: Gallagher 101 Peaks med. none none med. high med. low none
22: Gallagher 21 Peaks low none none med. high med. med. none
23: Katsuura high none none none high low low none
24: Lunacek bi-Rastrigin high weak none low high low low none

Table 5: Classification of the noiseless functions based on their properties (multi-modality, global structure,
separability, variable scaling, homogeneity, basin-sizes, global-local contrast, plateaus). Predefined groups
are separated by horizontal lines. Note that we did not assign global structure to the unimodal problems.
This is disputable and in contrast to the opinion of the BBOB organizers. However, is has not been formally
defined in the BBOB setup

Cluster 2:
IPOP-ACTCMA-ES � (1+2 mˆs) CMA-ES � iAMALGAM � MOS � DE-F-AUC

� Nelder-Doerr � G3PCX � FULLNEWUOA � BFGS � PSO

Cluster 3:
IPOP-ACTCMA-ES � MOS � DE-F-AUC � iAMALGAM � FULLNEWUOA

� PSO � G3PCX � (1+2 mˆs) CMA-ES � Nelder-Doerr � BFGS

Cluster 4:
MOS � iAMALGAM � IPOP-ACTCMA-ES � Nelder-Doerr � PSO

� (1+2 mˆs) CMA-ES � BFGS � DE-F-AUC � FULLNEWUOA � G3PCX

The consensus rankings allow for making several interesting observations. We discover
that the difference between clusters 1 and 2 is that classical optimization approaches work well
on functions in the first cluster while evolutionary strategies outperform them on the second
cluster of functions. These are the two clusters we can characterize fairly well, as can be seen in
Fig. 7. The last two clusters consist of a large amount of functions which are some of the hardest
in the test function set because on these RANDOMSEARCH outperforms some more advanced
methods. Nearly all functions in 3 and 4 are multimodal, most of them highly multimodal.
Whether the functions in 3 can usually be solved by the IPOP-ACTCMA-ES, this is often not
the case for cluster 4, so that many of these are not solved by any method.

Comparing the results obtained on the newly found four clusters and the clusters defined by
the BBOB team based on human experience, we come to very different conclusions. However,
we have to admit that we do not yet have adequate features to describe our groups.

20 Evolutionary Computation Volume x, Number x

Analyzing the BBOB Results by Means of Benchmarking Concepts

4 Outlook on Future Work

Analyzing the benchmark data as done in Sec. 3 already generates many valuable insights into
the performance ranking of optimizers and algorithmic groups under various problem condi-
tions. However, it does not provide one with a satisfying answer to the urgent problem of what
optimization algorithm should be selected in practice for a given, unknown problem or problem
domain. It is a well known fact from practice – and also clearly visible in our presented results –
that no current optimization algorithm solves all problems equally well. Although the No-Free-
Lunch theorem does not hold for the case of continuous spaces as shown by Auger and Teytaud
(2007), it is very unlikely that one optimization algorithm will completely dominate all others
in the near future. Therefore, a general set of rules which guide a practitioner in choosing an
appropriate algorithm for the problem at hand from the vast pool of available optimizers would
be a highly useful tool. At the same time, the knowledge used to construct such a ruleset might
be used to construct even better or more robust optimizers.

Of course, the construction of such a set of rules requires the definition of test problem char-
acteristics and relating them in a meaningful way to the expected performance of an optimizer.
This will in general be a very challenging problem. A very similar task has been considered
in the machine learning community under the term of meta learning (see for example Brazdil
et al. (1994)), where one tries to predict which learner is most appropriate given a feature vector
of data set characteristics. In Mersmann et al. (2010a) we already proposed a set of manually
constructed test set properties. These have two major disadvantages: They are discrete (e.g.
low, medium or high multi-modality) and therefore somewhat ambiguous. And they obviously
require their definition by an expert, which limits their practical usefulness, if one wants to move
beyond solving and analyzing the BBOB problem set.

We are currently working on the definition of an extensive set of numerical, computable test
problem characteristics, which contain, among other numerical properties, “average” gradients
and convexity, landmarking by simple and fast optimizers and techniques from regression and
classification to capture general landscape shapes. For first results see Mersmann et al. (2011).

In our future work we will try to demonstrate that:
1. These features can be constructed for any test problem without help from a human expert.
2. For the BBOB set these at least contain all the information gained by the manually crafted

features.
3. At least in an exploratory sense they can be used to relate test problem characteristics to

optimizer performance or ranking.
The biggest remaining challenge then will be to efficiently calculate a relevant subset of these
features in an on-line fashion and use them to select or switch to an appropriate optimization
algorithm set for a considered, unknown target problem.

5 Conclusions

In this article, we have shown how a combination of benchmarking methods and classical statis-
tical exploratory data analysis can be used to gain insight into the performance characteristics of
a set of algorithms under test. For this we introduced a novel approach to aggregate the results
of black-box optimization benchmarks. The approach requires a carefully chosen set of test
functions and performance measures. We apply this approach to the combined 2009 and 2010
BBOB results. After reducing the number of algorithms by partitioning the set of algorithms
into groups of similar algorithm designs and reducing these partitions to one or two representa-
tive algorithms, we are able to show that the relative performance of these algorithms is far from
uniform over all test functions. Even within the predefined groups of functions the algorithm
performance varies widely. Using the similarity between the individual rankings we used cluster

Evolutionary Computation Volume x, Number x 21

O. Mersmann, M. Preuss, H. Trautmann, B. Bischl, and C. Weihs

methods to find four groups within which the relative performance of the algorithms is homoge-
neous. We then set out to explain the cluster memberships by using properties of the functions
as features in order to build a decision tree which describes the relationship between clusters
and function properties. We will continue this line of work by developing tools to automatically
characterize functions using empirical features. Based upon these, rules can be constructed
which allow practitioners the selection of a reasonable set of algorithms as a starting point for
a new optimization problem. We call this new line of research Exploratory Landscape Analysis
(ELA).

Acknowledgments
This work was partly supported by the Collaborative Research Center SFB 823, the Graduate
School of Energy Efficient Production and Logistics and the Research Training Group ”Statisti-
cal Modelling” of the German Research Foundation.

Supplementary Material
The complete source code used to produce the figures, tables and consensus rankings in this
paper, and all figures, in color, as well some additional figures which might be useful to better
understand how some of the conclusions were derived, especially for Fig. 2, are available at
http://ptr.p-value.net/ecj13.

References
Arrow, K. J. (1950). A difficulty in the concept of social welfare. Journal of Political Economy, 58:328.

Auger, A., Finck, S., Hansen, N., and Ros, R. (2010). BBOB 2010: Comparison Tables of All Algorithms
on All Noiseless Functions. Technical Report RT-388, INRIA.

Auger, A. and Teytaud, O. (2007). Continuous lunches are free! In Proceedings of the 9th annual
conference on Genetic and evolutionary computation, GECCO ’07, pages 916–922, New York, NY,
USA. ACM.

Brazdil, P., Gama, Jo a., and Henery, B. (1994). Characterizing the applicability of classification algo-
rithms using meta-level learning. In ECML-94: Proceedings of the European conference on machine
learning on Machine Learning, pages 83–102, Secaucus, NJ, USA. Springer-Verlag New York, Inc.

Breiman, L., Friedman, J., Olshen, R., and Stone, C. (1984). Classification and Regression Trees. Chapman
& Hall/CRC.

Cook, W. D. and Kress, M. (1992). Ordianl Information & Preference Structures. Prentice Hall, Upper
Saddle River, NJ.

de Borda, J. C. (1781). Mémoire sur les élections au scrutin. Historie de l’Académie Royale des Sciences.

Hansen, N., Auger, A., and Auger, A. (2005). Performance evaluation of an advanced local search evo-
lutionary algorithm. In In Proceedings of the IEEE Congress on Evolutionary Computation, pages
1777–1784. IEEE Press.

Hansen, N., Auger, A., Finck, S., and Ros, R. (2009a). Real-parameter black-box optimization bench-
marking 2009: Experimental setup. Technical Report RR-6828, INRIA.

Hansen, N., Auger, A., Ros, R., Finck, S., and Pošı́k, P. (2010). Comparing results of 31 algorithms from
the black-box optimization benchmarking bbob-2009. In GECCO ’10: Proceedings of the 12th annual
conference comp on Genetic and evolutionary computation, pages 1689–1696, New York, NY, USA.
ACM.

Hansen, N., Finck, S., Ros, R., and Auger, A. (2009b). Real-parameter black-box optimization bench-
marking 2009: Noiseless functions definitions. Technical Report RR-6829, INRIA.

22 Evolutionary Computation Volume x, Number x

Analyzing the BBOB Results by Means of Benchmarking Concepts

Hastie, T., Tibshirani, R., and Friedman, J. (2001). The Elements of Statistical Learning. Springer, New
York.

Hornik, K. and Meyer, D. (2007). Deriving consensus rankings from benchmarking experiments. In
Decker, R. and Lenz, H.-J., editors, Advances in Data Analysis (Proceedings of the 30th Annual Con-
ference of the Gesellschaft für Klassifikation e.V., Freie Universität Berlin, March 8–10, 2006, Studies
in Classification, Data Analysis, and Knowledge Organization, pages 163–170. Springer.

Hunter, D. J. (2008). Essentials of Discrete Mathematics. Jones and Bartlett Publishers, Boston, MA.

Kaufman, L. and Rousseeuw, P. (1990). Finding Groups in Data: An Introduction to Cluster Analysis.
Wiley Interscience, New York.

Kemeny, J. G. and Snell, J. L. (1972). Mathematical Models in the Social Sciences. MIT Press, Cambridge,
MA.

Mersmann, O. (2009). Benchmarking evolutionary multiobjective optimization algorithms using R. Bach-
elor Thesis, http://www.statistik.tu-dortmund.de/∼olafm/ files/ba.pdf, TU Dortmund.

Mersmann, O., Bischl, B., Trautmann, H., Preuss, M., Weihs, C., and Rudolph, G. (2011). Exploratory
landscape analysis. In Proceedings of the 13th annual conference on Genetic and evolutionary compu-
tation, GECCO ’11, pages 829–836, New York, NY, USA. ACM.

Mersmann, O., Preuss, M., and Trautmann, H. (2010a). Benchmarking evolutionary algorithms: Towards
exploratory landscape analysis. In Schaefer, R. et al., editors, PPSN XI: Proceedings of the 11th In-
ternational Conference on Parallel Problem Solving from Nature, Lecture Notes in Computer Science
6238, pages 71–80. Springer.

Mersmann, O., Trautmann, H., Naujoks, B., and Weihs, C. (2010b). Benchmarking evolutionary multiob-
jective optimization algorithms. In Ishibuchi, H. et al., editors, Congress on Evolutionary Computation
(CEC). IEEE Press, Piscataway NJ.

Mersmann, O., Trautmann, H., Naujoks, B., and Weihs, C. (2010c). On the Distribution of EMOA Hy-
pervolumes. In Blum, C. and Battiti, R., editors, LION, volume 6073 of Lecture Notes in Computer
Science, pages 333–337. Springer.

Mood, A., Graybill, F., and Boes, D. (1974). Introduction to the Theory of Statistics. McGraw-Hill, New
York.

Saari, D. G. and Merlin, V. R. (1997). A geometric examination of Kemeny’s Rule. Social Choice and
Welfare, 17:2000.

Zitzler, E. and Thiele, L. (1998). Multiobjective optimization using evolutionary algorithms - a comparative
case study. In PPSN V: Proceedings of the 5th International Conference on Parallel Problem Solving
from Nature, pages 292–304, London, UK. Lecture Notes in Computer Science, Springer-Verlag.

Evolutionary Computation Volume x, Number x 23

