Servicenavigation
deutsch
|
Sitemap
|
Contact
|
Search
Alte Version der Fakultätshomepage! Zur neuen hier klicken.
Department
Studies
Research
Career
You are here:
Department of Statistics
>
Department
>
Chairs
>
Staff
>
Dr. Birte Hellwig
Department
Events
Events and Talks
Archive
Department
Chairs
Computational Statistics
Statistical Methods for Big Data
Mathematical Statistics
Mathematical Statistics with Applications in Biometrics
Mathematical Statistics and Applications in Industry
Econometrics and Statistics
Econometrics
Mathematical Statistics and Applications in Sciences
Statistics with Application in Engineering Sciences
Statistical Methods in Social Sciences
Statistical Methods in Genetics and Chemometrics
Business and Social Statistics
SFB 823
People
Dean
Information
Studies
Statistical Consulting
Centre for Statistical Consulting and Analysis
Contact
Contact and Travel Directions
Head
Prof. Dr.
Jörg Rahnenführer
Office
M.A.
Eva Brune
Academic Staff
M.Sc.
Julia Duda
Dr.
Birte Hellwig
Dr.
Franziska Kappenberg
Dr.
Michel Lang
M.Sc.
Ludger Sandig
M.Sc.
Marieke Stolte
Dr. Birte Hellwig
Statistische Methoden in der Genetik und Chemometrie
Contact
Office:
Mathematik,
Room 728
Phone:
+49 231 755 - 3118
E-Mail:
hellwig@statistik.tu-dortmund.de
Address:
Fakultät Statistik
Technische Universität Dortmund
44221 Dortmund
Office Hours
by appointment
Studies
Graduation (Dr. rer. nat.), TU Dortmund, 2018
Thesis:
Klassifikation von Brustkrebspatientinnen anhand vorausgewählter Gene mit charakteristischer Expressionsverteilung
Diplom (Statistics), TU Dortmund, 2009
Thesis:
Genexpressionsdaten als Kovariablen in Überlebenszeitmodellen für Brustkrebspatientinnen
Scientific Activities
April 2009 - April 2011: Member of Leibniz Research Centre for Working Environment and Human Factors (
IfADo
)
Since May 2011:
academic staff, chair of
Statistical Methods in Genetics und Chemometrics
,
TU Dortmund
Project collaboration
BMBF project StemNet: iPS cell derived human hepatocytes: improved reprogramming and development of in vitro disease models, subproject 4
DFG project RA 870/5-1: Improved prognostic signatures from microarray studies by selecting genes with characteristic distributions
Fields of Work
Statistical analysis of gene expression data
Survival Analysis
Publications
Last update 06.02.2020 16:54
|
Privacy
|
Impressum