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Regulatory networks and protein signalling pathways
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Flow cytometry technology

- - 3. Correlated phospho- |
- 2. Multiparameter | measures per cell

| Flow Cytometry ‘

@
S
@ _

> [Naolallasbn

Relative amounts




Protein activation cascade
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Protein activation cascade
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Protein activation cascade
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Statistical Task

Extract a network from a data matrix
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Either m independent (steady-state) observations

of the system X,...,Xy

Or time series of the system of length m: (X,,.... X1 1 11



Statistical Task

Extract a network from a data matrix
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Static Bayesian networks

Marriage between graph theory and
° probability theory.
‘Directed acyclic graph (DAG)
9 Q represents conditional independence

B  relations.
Markov assumption leads to a
factorization of the joint probability
ONO distribution:

— _/
V

P(A,B,C,D,E,F)
=P(A)-P(BIA)-P(CIA)-P(DIB,C)-P(EID)-P(FI|1C,D)
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Incidence Matrix of a DAG

Number the
variables/nodes
> 1=A, 2=B, 3=C, etc.
EDGES
(0 1 1 0 0 0)
O 0 01 0 O
I O 0 01 0 1
I(i,j)=1if there is an edge from node i to node j 00 00 11
I(i,j)=0 if there is no edge from node i to node j O 0 00O 0O
0 0 0 0 0 0



Ancestor Matrix of a DAG

A(j,i)=1if there is a path from node i to node |
A(j.i)=0 if there is no path from node i to node |

Number the

variables/nodes
1=A, 2=B, 3=C, etc.
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Bayesian networks
versus causal networks

Causal |pummmea Bayesian

Bayesian networks represent conditional (in)dependency

relations - not necessarily causal interactions.
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Equivalence classes of BNs
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P(A)-P(BIC)-P(ClA)
=P(A)-P(B,C)-P(C)"-P(C,A)-P(A)™

=P(CIB)-P(B)-P(C)"-P(AIC)-P(C)
> =P(AIC)-P(B)-P(CIB)
P(A,B)#P(A)-P(B)

P(A,B|C)=P(A|C)-P(B|C)

=P(AIC)-P(B,C) completed partially

=P(AIC)-P(BIC)-P(C) directed graphs
(CPDAGS)

@ v-structure @
3@ ;@ P(A,B)=P(A)-P(B)
P(A)-P(B)-P(C| A, B)

P(A,B|C)#P(A|C)-P(B|C)



intferpretation
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Static Bayesian networks

P(datal graph)- P(graph)
P(data)

P(graphl data) = o< P(datal graph)- P(graph)

= P(graph) - I P(data,B8(graph) | graph)d@ (graph)
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Static Bayesian networks

P(datal graph)- P(graph)

P(graphl data) = P(dara)

o< P(datal graph)- P(graph)
= P(graph) - I P(data,B8(graph) | graph)d@ (graph)

Parameterisation: Gaussian BGe scoring metric:

data~N(p,2)

with the (conjugate) normal-Wishart distribution for the parameters

H~N@*, (VW)-1) and W~Wishart(T,)
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Static Bayesian networks

P(datal graph)- P(graph)
P(data)

P(graphl data) = o< P(datal graph)- P(graph)

= P(graph) - I P(data,B8(graph) | graph)d@ (graph)

S— _
—

BGe metric: closed form solution
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Static Bayesian networks

P(datal graph)- P(graph)

P(graphl data) = P(dara)

o< P(datal graph)- P(graph)

= P(graph) - I P(data,B8(graph) | graph)d@ (graph)

V

uniform distribution BGe metric: closed form solution

= score,., (graph | data)
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Learning the network/graph
structure

graph — scoregg.(graph)

n 4 6 8 10

#DAGs 943 3,7-10° | 7,8 -10"" | 4,2 108

Idea: Heuristically searching for the graph M*
that is most supported by the data
P(M*|data)>P(graph|data),

e.g.: greedy search algorithm

23



Learning the network/graph
structure
Distribution of P(graph|data)

Data are sparse — Intrinsic uncertainty of inference

P(M|D) P(M|D)

M* M‘l’

Large data set D: Small data set D:
Best network structure M* well defined Intrinsic uncertainty about M*




MCMC sampling of Bayesian networks

Better idea: Bayesian model averaging via Markov Chain
Monte Carlo (MCMC) simulations
Construct and simulate a Markov Chain (M,); in the space of

DAGs whose distribution converges to the graph posterior

distribution as stationary distribution, i.e.:
P(M,=graph|data) — P(graph|data)

>

to generate a DAG sample: G,,6,,655,..6+
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Structure MCMC sampling scheme

(based on single edge operations)
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Metropolis Hastings sampler

A Metropolis Hastings MCMC sampling scheme consists of two parts.
(i) Given a graph G,4, a new graph is proposed with a proposal probability Q(G e |Gia)-

(ii) The new graph is accepted with an acceptance probability A(6,.,|6), or recjeted
otherwise.

In the structure MCMC sampling scheme a neighbour graph, that is a graph
G,., That can be reached from G, by one single edge operation, is randomly
drawn from a discrete uniform distribution in the proposal move (i).

And in step (ii) the new graph is accepted with probability:

P(D l GneW) P(Gnew) . Q(Gollenew)
, P(D l Gold) P(Gold) Q(Gnew lGold)

AG,,, 1G,,)=min {1
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Metropolis Hastings sampler

A Metropolis Hastings MCMC sampling scheme consists of two parts.
(i) Given a graph G,4, a new graph is proposed with a proposal probability Q(G e |Gia)-

(ii) The new graph is accepted with an acceptance probability A(6,.,|6), or recjeted
otherwise.

In the structure MCMC sampling scheme a neighbour graph, that is a graph
G,., That can be reached from G, by one single edge operation, is randomly
drawn from a discrete uniform distribution in the proposal move (i).

And in step (ii) the new graph is accepted with probability:

P(D l GneW) P(Gnew) . Q(Gollenew)

"P(D1G,,) P(G,,) 0(G, |1G,)
\ ldj \ ld/ C ld

AG,,, 1G,,)=min {1

Likelihood ratio Prior ratio  Hastings ratio
28



Metropolis Hastings sampler

A Metropolis Hastings MCMC sampling scheme consists of two parts.
(i) Given a graph G,4, a new graph is proposed with a proposal probability Q(G e |Gia)-

(ii) The new graph is accepted with an acceptance probability A(6,.,|6), or recjeted
otherwise.

In the structure MCMC sampling scheme a neighbour graph, that is a graph
G,., That can be reached from G, by one single edge operation, is randomly
drawn from a discrete uniform distribution in the proposal move (i).

And in step (ii) the new graph is accepted with probability:

SCO]"e BGe (Gnew) . Q(Gold l Gnew)

SCOre BGe (Gold ) QK(Gnew | GOld )

\ J
Y

Ratio of Scores Hastings ratio

AG,,, 1G,,)=min {1,
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Hastings ratio
Q(6,16,.,)2Q(6,.,16,) is possible

.A I @al probability = 1/6 @) O\b

Neighbourhood Neighbourhood
@)

W ele o 0] |02
O A A A
A A 2 o
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Metropolis Hastings algorithm
structure MCMC for Bayesian networks

Initialisation: Start from an arbitrary initial graph 6

(e.g. the empty-seeded graph) and set G,=6.
Iteration: Fori=1,., T
- Obtain a new graph G, from the proposal distribution Q(6,|G. ;)

- Accept the new graph with probability A(G;|G, ;) where
A(.,.) has to be specified as described above; otherwise reject
G, ; leave the Markov chain state unchanged; symbolically: 6=6G ;.
END
Discard an initial ,burn-in" period to allow the Markov chain to reach
stationarity, i.e o converge. For example discard the first I«<T MCMC samples.
Output: An MCMC sample from the posterior distribution P(G|D), symbolically:

MCMC sample: Gr,,,...,G1
31



Markov chain Monte Carlo (MCMC)

o @ e




Marginal edge posterior probabilities

DAGs }9\ @

(B) () cPpAGs (B © m’rerpre‘ra‘non <
>
@ @ super'posmon

®C ® ©®

Use the DAG (CPDAG) sample for estimating the marginal
posterior probability of ,.directed edge relation features”

Zl( )

(T 1) =I+1

where I(G)) is 1 if the CPDAG of G, contains the
directed edge A—B, and O otherwise 33

P(A— B)=




Convergence of MCMC sampling

The DAG sample G,,6,,65,..G+ is generated via
Markov Chain Monte Carlo (MCMC) simulations so
that the Markov Chain (M,), converges to the

graph posterior distribution:
P(M,=graph|data) — P(graph|data)

t >
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Convergence of MCMC sampling

The DAG sample G,,6,,65,..G+ is generated via
Markov Chain Monte Carlo (MCMC) simulations so
that the Markov Chain (M,), converges to the

graph posterior distribution:
P(M,=graph|data) — P(graph|data)

In practice: tis not infinitelll

35



MCMC simulation 1 MCMC simulation 2

AV V4

MCMC 1 MCMC 1 MCMC 1

T infinite T too short T long enough




Network reconstruction accuracy

true regulatory Q
network

marginal edge

data posterior probabilities
: - low
high Thresholding —

Q Q concrete network O ﬁ

predictions
Sensitivity:1/2=0.5

Specificity:4/4=1.0 Sensitivity:2/2=1.0
Specificity:3/4=0.75



Receiver Operator Characteristic (ROC) curve

Sensitivity (%)

I

|
100 80 60 40 20 O
Specificity (%)
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AUC scores
Area under Receiver Operator Characteristic (ROC)

curve
Random predictor Parfact predictor Realistic predictor
1 1 1 =
L] n %
2 : =
@ 7 2
r 2 05 9 05 3 05
© amn li:l m g
2 F : £
2 /
9 |
Q
") 0 0 0
0 04 1 0 05 1 0 05 i
False positives False positives False positives

inverse specificity
AUC=0.5 AUC=1 0.5<AUC<1 39



Outlook
to practical application



Gold-standard RAF pathway according to Sachs et al. (2004)
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Outlook

Take the RAF pathway topology

Cellular signalling cascade which consists of 11 phosphorylated proteins
and phospholipids in human immune systems cell

(true network known from the literature)

42



Outlook

Generate synthetic Gaussian network data
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Generate synthetic Gaussian network data

@

initial node
without parents

. where ¢, - is a Gaussian
— pip3
plp3 R 8pip3 with expectation =0 and variance 6%=1

We generate m indepentently and identically distributed (iid) realisations
for pip3, and we standardise the m observations:
pip3 <- zscore(pip3):=(pip3-mean(pip3))/std(pip3)

44



Generate synthetic Gaussian network data

OS
plcg

Having sampled m realisations for parent node pip3, we sample the
regression coefficient p, from a uniform distribution

on [0.5,2] with a randomly drawn sign +/-
And we generate m iid realisations for plcg as follows :

plcg p— IBI . plp3 + & l where the noise term €plq 1S @ Gaussian
picg

with expectation p=0 and variance 62

Standardise the m values for plcg <- zscore(plcg):=(plcg-mean(plcg))/std(plcg)



Generate synthetic Gaussian network data

SC
_. Plys
@® = - /
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| €

Having sampled m realisations for pip3 and plcg, we sample both
regression coefficients b, and p; from a uniform distribution

on [0.5,2] with randomly drawn signs +/-
And we generate m iid realisations for pip2 as follows :

plpz i 182 . plp3 + 183 . plcg + gpipZ where the noise term ¢, , is a Gaussian

with expectation p=0 and variance 62

Standardise the m values for pip2 <- zscore(pip2):=(pip2-mean(pip2))/std(pip2)



Generate synthetic Gaussian network data

cSmve

We go to the next node, etc.

Each node is described as a linear combination of its parent nodes. The
regression coefficients are randomly sampled, and the noise terms are
Gaussian distributed. We standardise the data to avoid that the signals
become stronger and stronger. The parameter 62 can be used to vary the
signal-to-noise (SNR) ratio:
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Generate synthetic Gaussian network data

E.g.: pip2=p, pip3+ f3;,-plcg +&€ , ,
_ ~ J

signal
from the parents

std (signal) = std(f, - pip3+ B, - plcg)

L

NI(0,1) N(0,1)
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Generate synthetic Gaussian network data

E.g.: PiP2= [, pip3+f;-plcg +€,,,
H_/

noise

std(noise) = std(€,, ;) =0
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Generate synthetic Gaussian network data

E.g.: PiP2= @ - pip3+ ;- plcg + €,
~ H_/

signal noise
from the parents

std(signal)  std(p, - pip3+ ;- plcg)
std (noise) o

SNR =

50



Task: We will try to infer the
Raf-pathway graph topology
from a synthetically generated
data set
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