Servicenavigation

Archivierte Version! ⇒ Zur Aktuellen [de]…      Archived Version! ⇒ Go to Current [en]…
Statistik: mehr als Erbsen zählen

You are here:

M.Sc. Guillermo Briseno Sánchez

Statistical Methods for Big Data

Contact

Mathematik,
Room 226
+49 231 755 - 7204
Fakultät Statistik
Technische Universität Dortmund
44221 Dortmund


Consultation hours

  • By request

 

Research interests

  • Distributional regression / GAMLSS (uni- / bi-variate)
  • Semiparametric regression
  • Statistical boosting
  • Causal inference (instrument-based)

 

Publications

  • Briseño Sanchez, G., Hohberg, M., Groll, A., and Kneib, T. (2020). Flexible instrumental variable distributional regression.
    Journal of the Royal Statistical Society: Series A (Statistics in Society)
    .
  • Briseño Sanchez, G., and Groll, A. (2020). Modelling the effect of rural electrification on employment via component-wise boosted causal distributional regression.
    In: Proceedings of the 35th International Workshop on Statistical Modelling: Volume I., Bilbao, Basque Country, Spain, 25 – 30.
  • Briseño Sanchez, G., Hohberg, M., Groll, A., and Kneib, T. (2019). Flexible Instrumental Variable Distributional Regression.
    In: Proceedings of the 34th International Workshop on Statistical Modelling: Volume II., Guimarães, Portugal, 299 – 305.

 

Short CV

  • Since Summer term 2018: PhD researcher at FG Datenanalyse und Statistische Algorithmen (now Statistical Methods for Big Data).
  • Winter term 17/18: Master's thesis "Flexible Instrumental Variables Distributional Regression: A Simulation and Empirical Study" at the Chair of Statistics & Econometrics (Georg-August Universität Göttingen).
  • 2015 - 2018: Master's in Applied Statistics (M.Sc.) at Georg August Universität Göttingen.
  • Winter term 15/16: Bachelor's thesis "Classification Analysis of Competitive Location Problems" at Institute of Operations Research (Universität Hamburg). 
  • 2012 - 2015: Bachelor's in Business Administration (B.Sc.) at Universität Hamburg. 

 

Teaching