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Statistics for hearing aids: Auralization

Claus Weihs, Klaus Friedrichs, Bernd Bischl

Chair of Computational Statistics, TU Dortmund, Germany
e-mail: {weihs, friedrichs, bischl}@statistik.tu-dortmund.de

Abstract. Based on a computational auditory model, a method for quality
measurement of sound transformation algorithms for hearing aids is studied
by means of statistical inversion of the model. Auditory models describe the
transformation from acoustic signals into spike firing rates of the auditory
nerves by emulating the signal transductions of the human auditory periphery.
The inverse approach, which is called auralization, is discussed in this paper.

There have already been few successful attempts to auditory inversion
each of which deal with relatively simple auditory models. In recent years
more comprehensive auditory models have been developed which simulate
nonlinear effects in the human auditory periphery. Since for this kind of
models an analytical inversion is not possible, a statistical auralization
approach using classification and regression methods is proposed.

Keywords: auditory model inversion, classification, regression, MARS.

Introduction

=asuring the quality of signal algorithms for hearing aids is a hard challenge.
=sss with probands are difficult and expensive because there are many different
‘nds of hearing impairments. Cheaper and simpler are tests using an auditoy
adel. i.e. a computer model of the human auditory system. It requires an acoustic
wemal as input and outputs the spike firing rates of the auditory nerve fibers. The
man auditory system consists of roughly 3000 auditory nerve fibers but in
Zitory models this is usually simplified to a much smaller quantity. A popular
~d=l is the one of Meddis and Sumner [8], which has also been used for this
w2y. In this model the auditory system is coded by a multichannel bandpass filter
re each channel represents one specific nerve fiber. As in the human system
wch channel has its specific center frequency by which the perceptible frequency
e is defined. Figure 1 shows the center frequencies of the 30 channels, as they
- defined in the default settings of the model. The output of the model, called
“itory image, can be seen in figure 2. While the 30 channels are located on the
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vertical axis and the time response on the horizontal axis, the greyscale indic:
the spiking probability per second.

After having implemented some kind of hearing loss in the model. -
introduced by Jepsen [4], auditory images of the modified model can be compas:
to the ones of the normal-hearing model. While a hearing aid would be pe
if it would produce exactly the output of the normal-hearing model for
hearing-impaired listener as well, this requirement is almost impossible for m
kinds of hearing impairments. Thus, the distance between two auditory imas
has to be measured. Unfortunately, it is not known how the human brain intermes
the auditory images and so defining a distance function is very complicas
Instead, in this paper the inverse procedure to resynthesize the original sizm
from the auditory image is proposed. Due to this method the auditory image of
hearing-impaired listener gets hearable and can be compared easily by a sound
to the original signal. More precisely, it is even not essential to get the input sizs
exactly but it is sufficient to get a signal which sounds like it. This proceduss:
called auralization. ‘

There have already been successful attempts of auralization by ana
inversion. Slaney introduced techniques to recreate sounds from perces
displays known as cochleagrams and correlograms [7] and Hohmann presentes
approach to invert the gammatone filter bank, a filter which is also used in Mea
auditory model [3]. Feldbauer analyzed the problem from another directss
He developed an auditory model with the intention that it can be inverted
a relatively low computational effort [1].

In the more comprehensive model of Meddis cochlear-nonlinearities -
modeled which are important with respect to many perceptual experiments
animal observations. Unfortunately, the resulting model is impossible to &
analytically. Therefore, in this study an auralization approach using statises
methods is introduced.
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Figure 1. Center Frequencies (CF) of Meddis model
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Figure 2. Auditory image
2. Auralization by using statistical methods

To simplify the problem in this study it is assumed that the input stimulus is
one harmonic tone. Harmonic tones are typical signals for musical sound. They
consist of a fundamental frequency, i.e. the key tone, and integer multiples of this
frequency, which are called overtones. The key tone and the overtones together
are called partial tones. The sound of a harmonic tone is defined by its involved
frequencies and the power of each frequency. Figure 3 shows an exemplary
harmonic tone which contains a key tone of 300 Hz and the overtones of 600 Hz
and 900 Hz. Additional to the contained frequencies the sound of a tone is also
dependent on their power. In the example the key tone (300 Hz) has a power of
20 dB, the first overtone (600 Hz) a power of 87 dB and the second overtone
1900 Hz) a power of 77 dB.

Thus, to resynthesize a harmonic tone a two-stage concept is proposed. In a first
step the key tone and all involved overtones have to be detected by classification and
in a second step the power of each partial tone has to be estimated by regression.

A crucial method for the whole task is to use the phase locking effect which was
mntroduced by Moissl and Meyer-Base [5]. This effect phase-locks the impulse rate
of the channels to the stimulus. In our problem this implies that each frequency,
which is part of the input signal, will also occur in some channels. This correlation
can be seen in figure 4, where an input stimulus and the corresponding auditory
image are plotted. Exemplarily, a frequency of 300 Hz, which means 3 periods
every 0.01 seconds, can be discovered in both images. In the auditory image this
period can be seen at the top most clearly.

2.1. Frequency detection

In frequency detection the periodicities of each channel output have to be
analyzed. Therefore, the discrete Fourier transform (DFT) of each channel output
is generated. Because of the phase locking effect in each of these outputs peaks
should occur at frequencies which are part of the acoustic stimulus. Such a peak
gets the stronger the smaller the difference is between this frequency and the center
frequency of the channel. From this it follows that it is sufficient to detect in each
channel only the neighboring frequencies of its center frequency. Furthermore,
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Figure 3. Exemplary harmonic tone: key tone: 300 Hz (80 dB), 1% overtone: 600 Hz (87 dB L.
2™ gvertone: 900 Hz (77 dB)

stimulus: 300Hz, 600Hz, 900Hz
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Figure 4. Phase locking effect: Frequencies in the input occur in the auditory image as well

the restriction on harmonic tones ensures that in each of the 30 channels at =
one frequency has to be detected.

overtone with the frequency of 400 Hz. This frequency is also the maximum p&
of this chart. A first approach is detecting the main peaks of all channels anc.
this way, getting all frequency components. Unfortunately, figure 6 shows thatd
maximum peak does not always define a frequency which is part of the acc
stimulus. Here the maximum peak is also at 400, but in this example 400 Hz i3
part of the input tone. Therefore, after having detected the maximum peak of
DFT it has to be classified if this frequency is in fact part of the original signat
order to construct a classification rule. In this study this is done by classificas
trees. Therefore, to enable supervised learning a training set of harmonic tonss
required. Because there are differences between low and high frequencies =&
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channel needs its own decision tree. For each tree seven features are used: The
Jocation of the maximum peak (the analyzed frequency), the power of this peak,
the smoothness of this peak, the distance to the neighboring peaks and the power

of these peaks. These features are visualized in figure 7.

Figure 8 shows the features of a harmonic tone which consists of the
frequencies 300, 600 and 900 Hz. In the first two columns the channel number
and its corresponding center frequency are listed. The third column shows the
detected main frequency of each channel. The features, which are used for the
classification task, are listed in columns 4-9. Finally, the last two columns show the
rarget variables for the classification respectively the regression task which enable
supervised learning. An exemplary classification tree is shown in figure 9. In this
example the probability for “Yes” i.e. that the frequency is a tone component is
higher if the maximum peak is high, the location of this peak is low, the peak of
the next frequency on the right side is low or the distance to the next peak on the

left side is low.
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Figure 8. Feature generation of an exemplary harmonic tone
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Figure 9. Classification tree of channel 13

2.2. Power estimation for each frequency

After having detected all frequencies of the input tone, the power of each frequen
has to be estimated. Therefore, here the target variable is the power in dB of
each frequency component. The same features as for the frequency detectios
are used and additionally the following four other features: The average and the
maximum firing activity in the analyzed channel as well as the mean power &%
the analyzed frequency in the other 29 channels since it is supposed these
features are correlated with the sound volume of the frequency in the input smﬂ.
Furthermore, the overtone number of the frequency in the harmonic tone is use
which is known after all involved frequencies are detected. Since this prob
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should be more complicated than the one in section 2.1, 7 regression methods
are compared: a simple linear model, a linear model with two-way interactions,
a complete second-order linear model, a regression tree, a random regression
forest, a kriging model with a Matern 5/2 covariance kernel and a kriging model
with a Gaussian covariance kernel. For kriging see [6], for the other models [2].

3. Experimental design

To test the approach for different kinds of harmonic tones an experimental design
generating several training sets of synthetic tones is used. Generally for all tones
the key tone has a frequency between 80 and 3400 Hz. The powers of the key tone
and the first overtone are uniformly distributed between 60 and 95 dB, whereas
the power of each other overtone is distributed between 55 and 85 dB according
10 a beta distribution. With a specified probability the power of these overtones
can also be 0 dB.

Therefore, in addition to the channel number (ch), three influencing variables
regarding the synthetic tone generation are considered: The number of partial
tones (tones) with values 1, 3, 6 and 10, the duration (dur) of the tones with values
0.05, 0.2 and 1 seconds and the probability (prob) for 0 dB for each overtone with
values 0, 0.2 and 0.5. Note that this last influencing variable is only set to 0.2 or 0.5
if 6 or 10 partial tones are used. Overall, the experimental design leads to 24 factor
settings (tones, dur, prob) for each channel. For each setting 3000 harmonic tones
are generated, in each case there are 100 key tones for all 30 channels. Since there
are 30 channels and 24 factor settings, 720 problems have to be solved.

In the next two sections we will relate the channel number and the three other
influencing factors to the misclassification error rate of the decision tree and the
root mean square error of the regression models, respectively. For this, we fit
multiple adaptive regression splines (MARS) to our experimental data in order
to perform a further analysis regarding which factors and interactions have the
most effect on the performance value. A regression model of this type has the
advantage that because of its non-parametric nature, quite complicated data can be
fitted, but the resulting function is still interpretable. For further details regarding
the model and its fitting procedure the reader is referred to [2].

4. Results for the frequency detection task

The misclassification error rates of the 720 decision trees are calculated by 10-fold
cross-validation. In table 1 the mean and maximum error rates of the 24 data sets
over all 30 channels are listed.

As can be seen in the upper two plots of figure 10 of the MARS model, the
error rate is mainly dependent on the number of partial tones and the duration of
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the input tones. The first effect is expected, since the more frequencies a signal
contains, the more complex (and harder to classify) it gets. Shorter tones perfo
worse because a higher error occurs in calculating the discrete Fourier transfor
for low frequencies. For example in 0.05 seconds the frequency 100 Hz just b
5 periods. In contrast, the probability for O dB for each overtone does not se=
to have much influence on the result. Maybe this is because a higher prob vales
results in more diverse tones, but also on average in a lower number of part:
tones. Taken together, these two aspects might compensate. Table 2 deals with ©5
mean error rates of the 30 channels over all 24 data sets. As it can be seen hes=
the error rates are higher for the upper channels on average. Figure 10 reveals &
this is specifically true, if the number of partial tones is also high. '

This fact is probably due to the employed method of tone generation. In
lower channels a frequency can only occur as a key tone which ensures a me
lower complexity than in the upper channels, in which each frequency can be
key tone as well as any overtone. In fact this impact is insignificant for sign:
without overtones, as each contained frequency can just be the key tone even @
the upper channels. Note that the shown MARS model has an R? of 0.80.
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Figure 10. Effects plot for MARS model, relating ch, tones, dur and prob and to the
misclassification error of the decision tree. Note that only the most important effects are sh
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Table 1. Mean and maximum error rates of frequency detection over all 30 channels

Mean error rate in % | Max error rate in %
1 partial tone, 1 sec 0.1 0.3
1 partial tone, 0.2 sec 0.1 0.5
1 partial tone, 0.05 sec 02 0.7
3 partial tones, 1 sec 0.2 0.7
3 partial tones, 0.2 sec 0.2 0.6
3 partial tones, 0.03 sec 0.6 1.3
6 partial tones, 1 sec, Oprob =0 0.4 0.8
6 partial tones, 0.2 sec, Oprob =0 0.5 1.0
6 partial tones, 0.05 sec, Oprob =0 1£5 22
6 partial tones, 1 sec, Oprob = 0.2 0.6 12
6 partial tones, 0.2 sec, Oprob = 0.2 0.6 1.1
6 partial tones, 0.05 sec, Oprob = 0.2 1.1 1.9
6 partial tones, 1 sec, Oprob = 0.5 0.5 12
6 partial tones, 0.2 sec, Oprob = 0.5 0.5 12
6 partial tones, 0.05 sec, Oprob = 0.5 1.0 1.8
10 partial tones, 1 sec, Oprob =0 0.6 1.4
10 partial tones, 0.2 sec, Oprob =0 1.2 2.8
10 partial tones, 0.05 sec, Oprob =0 2.6 6.6
10 partial tones, 1 sec, Oprob = 0.2 1.2 3.0
10 partial tones, 0.2 sec, Oprob = 0.2 1.4 32
10 partial tones, 0.05 sec, Oprob = 0.2 2.5 5.0
10 partial tones, 1 sec, Oprob = 0.5 0.9 24
10 partial tones, 0.2 sec, Oprob = 0.5 0.9 2:1
10 partial tones, 0.5 sec, Oprob = 0.5 1.4 2.7

Table 2. Mean error rates of frequency detection over all 24 data sets

Channel number 200 7, TR [EPCO () o 5 A 15 o L R 8 o S e R 8
Errorratein % [02104/0.5/05(03(03]03]|04]0.6(0.7]0.6 0.5|107]0.7]0.6

—

Channel number | 16 |17 |18 {19 |20 |21 |22 |23 |24 |25 |26 |27 28 |29 |30
Errorratein% |0.9|1.0|1.2|14]13[14|13]|14|14]13|14]13)1.1 1600 (&1 121

5. Results for the power estimation task

The seven regression methods are applied to the 720 problems and the root
mean square error (RMSE) is calculated by using 10-fold cross-validation. The
minimum, median and maximum error rates of each method — aggregated over all
problems — are listed in table 3. These results should be related to the power range
of each frequency which lies between 55 dB and 95 dB as mentioned in section 3.
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This means that the standard deviation of each problem is around 9 dB. It can be
seen that the RMSE ranges from fine 0.04 dB to worse 3.7 dB. However, as will be
shown in the next section, even the worst obtained deviation in our experiments is
not audible for the human ear in many harmonic tones. A comparison of the seven
regression methods reveals that the kriging model with Matern 5/2 covariance
kernel has the best median error, the kriging model with the Gaussian kernel and
the quadratic linear model have the lowest minimum error and random forest has
the best maximum error.

Now each regression model is assigned a ranking score for each of the 720
problems and the result is summarized in figure 11. Kriging with the Matern kernel
is the best method for most of the problems. But also the random forest and kriging

10Ten005sekd -
10Ton02sskd -
10Tontsehd -
10Ton005seke -
10Ton02seke -
10Tonlsehe - &
10Ten005s2kb -
10Tono2sekb -
10Ton1sekb -
$Tonoo5sekd
8Ton02sskd
BTontsekd -
& &Tono03seke -
sTono2seks
&Tontsske -
6Ton00Ssekb
8Tond2sekb
gTon1sekb -
3Tend0fsekb -
dTonuZsekb
3Ten1sekb -
1TondbSzekb
1Tonn2sskb
1Tonisskh

rsm_twi rsm_so forest  kr_mats2 kr_gauss s

10 15 20 25 30
ch

Figure 11. Ranking of the 7 regression Figure 12. Best model for each problem
methods summarized over all 720
problems

with a Gaussian kernel perform often quite well. In contrast, the other 4 models
are only rarely best. Figure 12 shows which regression model is best for which
problems. The channels are enumerated on the horizontal and the data sets on the
vertical axis. As described in section 3 the data sets are defined by their number of
partial tones (1, 3, 6 and 10), their tone duration (0.05, 0.2 and 1 sec.) and their 0 dB
probability for each overtone (b=0, ¢=0.2 and d=0.5). While for lower channels and
only one partial tone kriging with the Gaussian kernel is best, for upper channels
and more complex tones (6 and 10 partials) random forest has the lowest error. For
most of the other problems kriging with the Matern kernel performs best. Figure
13 shows the RMSE for each problem when selecting the best model. As expected
for few overtones a lower RMSE can be obtained, which can also be seen in figure
14, where the average RMSE of data sets containing the same number of partial
tones are plotted versus the channel number. Furthermore, it can be noticed that the.
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lower channels perform better, an effect which was already observed in the results
regarding the frequency detection. In contrast to frequency detection, here the error
surprisingly gets the smaller the shorter the tones are, a fact which is confirmed
by figure 15, which shows the RMSE densities for the 3 different duration values.
Tones which have a duration of 0.05 seconds score best and 1 second worst. Thus,
the important information about the power of a tone might be at the beginning of
the spike activities. This observation could lead to future improvements of the
proposed algorithm by using additional features which describe the beginning of
a signal. In figure 16 the RMSE densities for the 3 different values of prob are

i
10Ton005sekd =
10Ton02askd -
10Ton1sekd -
10Ton005seks
10TondZseke -
10Tontseke
10TonoGSsekh
10Tono2sekb -
10Ton!zakb
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1Ton02sehb - &
1Tonteekl - I
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Figure 13. Best Performance for each Figure 14. Performance dependent on
problem the number partial tones
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Figure 17. Effects plot for MARS model, relating ch, tones and dur and to the RMSE of the best
regression model

shown. As in the previous section, again the error seems to be independent of this

value. All these results are also validated by a MARS model approach, which is
depicted in figure 17. Note that the shown model has an R” of 0.87.

Table 3. Minimum, median and maximum of RMSE for all 720 problems (in dB SPL)

Learner Minimum | Median | Maximum
krigMatern52 0.06 2:5 4.7
rforest 0.63 2.8 3.7
krigGauss 0.04 2.8 8.0
Im 0.27 39 104
cart 1.57 4.0 5.5
ImTwi 0.04 8.1 2.5 % 10"
1ImSo 0.07 9.3 3.6 * 10°
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6. Resynthesizing test

‘While each partial tone and its sound volume can be detected relatively exact as it
is shown in the last two sections, there does not exist a criterion for measuring the
overall quality of auralization. Instead in this section an exemplary resynthesizing
test of one harmonic tone is shown. As input the tone is used, which was already
shown in section 2 respectively figure 3. The output tone after auralization consists
of a key tone (301 Hz) and two overtones (602 Hz and 903 Hz). Since a difference
between 300 Hz and 301 Hz is not hearable for humans, all frequencies are
detected almost perfectly. The power of the key tone is estimated as 79.4 dB
(instead of 80 dB), the first overtone as 86.7 dB (instead of 87 dB) and the second
overtone as 71.8 dB (instead of 77 dB). Figure 18 shows this tone in the time
domain. Contrary to the relatively big error of power estimation for the second
overtone the overall difference between the input and the output is small and
almost not hearable. The difference between the two tones can be seen in figure 19.
Since the partial tones are detected correctly, this error plot consists of the same
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Figure 18. Resynthesized tone Figure 19. Error of the resynthesized tone

frequencies as the input, but here the frequencies 300 and 600 Hz have a much
smaller amplitude. The relatively small error regarding the sound quality is based
on the fact that with respect to the sound volume the second overtone is dominated
by the other two frequencies. If this effect can be confirmed for most harmonic
tones the results of the power estimation task might already be fully sufficient.

7. Conclusion

At least for harmonic tones, using classification and regression methods for
auralization of auditory models is a successful approach. While the frequency
detection is almost solved and mainly just has problems with very short tones
the power estimation of each frequency component probably also leads to
acceptable results. Since the results of this task are better for shorter tones a further
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improvement could result from adding new features which just describe the
beginning of a tone.

Current studies try to show the ability to generalize the proposed auralization
approach to real tones and to the impaired-listener model. Auralization of this
model can show which information is lost if some specific hair cells are damaged.
Furthermore, a criterion has to be found to measure the overall quality of
auralization, In this study this was done for each partial tone separately while the
quality of the resynthesized tone had to be tested by sound tests. Finally, in future
studies the auralization approach should also be adapted to more comprehensive
input signals, in which power and pitch changes occur.
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