Functional regression analysis using R

Christian Ritz

Statistics Group Faculty of Life Sciences (LIFE) University of Copenhagen, Denmark

Dortmund, August 13 2008

Examples

What are functional data?

- Activity and disease patterns
 (eg. monitoring birds, children or insects over time)
- Animal and human growth curves (eg. weight gain in pigs and dietary studies)
- Fluorescence curves
 (eg. photosynthesis processes over time (Ritz and Streibig, 2008))
- Reproduction histories
 (eg. longevity of medflies (Chiou et al, 2003))

Examples

What are functional data?

- Activity and disease patterns
 (eg. monitoring birds, children or insects over time)
- Animal and human growth curves (eg. weight gain in pigs and dietary studies)
- Fluorescence curves
 (eg. photosynthesis processes over time (Ritz and Streibig, 2008))
- Reproduction histories (eg. longevity of medflies (Chiou et al, 2003))

More about fluorescence curves

- Experiment:
 - dark-adapted leaves exposed to light (only the first seconds of this process is recorded!)
- Functional response:
 - proportion of light not used in the photosynthesis
- High throughput measurements:
 - ► fast and non-invasive
 - informative long before visual effects
- Curve trajectory changes with species and stress level

Observed fluorescence curves

Three replicates

More about functional data

Common features:

- repeated measurements on the same subject or unit
- basic observation: smooth function
 (in practice observed discretely on a grid)

Use of functional data:

- classification/clustering
- ANOVA- and regression-like models
- prediction

Smoothness being exploited in various ways

More about functional data

Common features:

- repeated measurements on the same subject or unit
- basic observation: smooth function
 (in practice observed discretely on a grid)

Use of functional data:

- classification/clustering
- ANOVA- and regression-like models
- prediction

Smoothness being exploited in various ways

Functional regression

How to relate functional responses to scalar, explanatory variables?

Available functional regressions models:

- Semi-parametric approaches:
 - additive effects models (Ramsay & Silverman, 2005)
 (R package fda on CRAN and R-Forge)
 - multiplicative effects models (Chiou et al., 2003)
 (R package fmer soon on CRAN)
 - ▶ ...

Functional regression

How to relate functional responses to scalar, explanatory variables?

Available functional regressions models:

- Semi-parametric approaches:
 - additive effects models (Ramsay & Silverman, 2005)
 (R package fda on CRAN and R-Forge)
 - multiplicative effects models (Chiou et al., 2003)
 (R package fmer soon on CRAN)
 - **>** ...

Functional multiplicative effects models

A little notation:

- $y_i: T \mapsto \mathbb{R}$ is a function (i = 1, ..., N)
- $T \subseteq \mathbb{R}$ is the interval
- Observed at points t_1, \ldots, t_K (K large)

Multiplicative effects regression model:

$$E(y_i(t)|z_i) = \psi(t,z_i)\mu(t)$$

Right-hand side:

- \bullet μ : capturing the overall average trend
- ψ : multiplicative effects: low-degree polynomials in t with coefficients depending on explanatory variable z_i

Estimation – in two steps

- 1 Non-parametric estimation:
 - ▶ μ: smoothing based on all curves (R package KernSmooth)
 - coefficients in ψ : obtained using least squares
- Parametric or semi-parametric estimation for coefficients:
 - O choose GLM (glm()) or quasi-likelihood model
 - ② iterative estimation: (IWLS+smoothing)
 - ★ link and/or variance functions (not in GLM case)
 - ★ parameters in linear predictor

Using R

```
library(fmer)
bo.m1 <- fmerm(fluo2 ~ log(time), id2, id0,
data = barleyOat, quad = TRUE)</pre>
```

Arguments to fmerm:

- fluo2: function values
- log(time): grid values
- id2: curve id (54 curves in total)
- id0: treatment factor
- ullet quad: ψ quadratic in t

Model fit components

- Estimated overall mean
- Estimated regression curves (use plot method)
- For each coefficient in ψ :
 - estimated link and variance functions
 - estimated parameters (use summary method)
 - fitted values and residuals (use fitted and residuals)

Fitted fluorescence curve

Using the plot method:

Pros and cons

Advantages:

- non-parametric modelling of the form of the curves (separating the time effect from other effects)
- ► parametric regression models for *the differences* between curves
- graphical model check available (ratioPlot)

Drawbacks

- automatic bandwidth selection needed (used repeatedly)
- two-step estimation procedure (some variation lost)

Pros and cons

Advantages:

- non-parametric modelling of the form of the curves (separating the time effect from other effects)
- parametric regression models for the differences between curves
- graphical model check available (ratioPlot)

Drawbacks:

- automatic bandwidth selection needed (used repeatedly)
- two-step estimation procedure (some variation lost)

Future R work

- Testing on more datasets!!!
- Setting up a modular structure for model fitting:
 - one function per step in estimation procedure
 - plug-ins for different smoothing methods
 - choice between bandwidth selection methods
 - more flexible model specification
- Constructing extractors for various fit components

Future theoretical work

- Joint estimation
- Extended modelling including the residual process
- Model checking diagnostics

References

Chiou, J. M., Müller, H.-G. and Wang, J. L. (2003). Functional quasi-likelihood regression with smooth random effects. *J. R. Statist. Soc. B*, **65**, 405–423

Ramsay, J. O. and Silverman, B. W. (2005). Functional Data Analysis (2nd edn), Springer, New York.

Ritz, C. and Streibig, J. C. (2008). Functional regression analysis of fluorescence curves. *To appear in Biometrics*

