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2 sides to the talk:

Robustness features against XS correlation

XS-dependence without any explicit spatial characteristic (e.g., due to
the presence of common factors)

OLS/FE/RE estimates are still consistent but for valid inference we
need robust covariance matrices

(to be included in the plm package)

Spatial models characterizing XS dependence in a parametric way

explicitly taking distance into account

distance matrix is exogenous and time-invariant (although it needn’t
be geographic distance)

the estimation framework is ML

(forthcoming in an ad hoc package)
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Outline of the talk

1 Robust linear restriction testing in plm

2 General cross-sectional correlation robustness features

3 Diagnostics for global cross-sectional dependence

4 Diagnostics for local cross-sectional dependence

5 ML estimators and ML-based tests for spatial panels
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Robust linear restriction testing in plm

Robustness features for panel models

The plm package for panel data Econometrics (Croissant and Millo):

version 1.0-0 now on CRAN

paper just appeared in Econometrics Special Issue of the JSS (27/2)

implements the general framework of robust restriction testing (see
package sandwich, Zeileis, JSS 2004) based upon

correspondence between conceptual and software tools in

W = (Rβ − r)′[R ′vcov(β)R]−1(Rβ − r)

White (-Eicker-Huber) robust vcov, a.k.a. the sandwich estimator

The plm version of robust covariance estimator (pvcovHC()) is based on
White’s formula and (partial) demeaning
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General cross-sectional correlation robustness features

Robust diagnostic testing under XSD

So we need a vcov estimator robust vs. XS correlation. 3 possibilities: 2
based on the general framework

vcov(β) = (X ′X )−1
∑

i

XiEiX
′
i (X ′X )−1

White cross-section: Ei = eie
′
i is robust w.r.t. arbitrary

heteroskedasticity and XS-correlation; depends on T-asymptotics

Beck & Katz unconditional XS-correlation (a.k.a. PCSE): Ei =
ε′i εi

Ni

or the Driscoll and Kraay (RES 1998) estimator, robust vs. time-space
correlation decreasing in time . . .
. . . and the trick of robust diagnostic testing is done! Just supply the
relevant vcov to coeftest{lmtest} or linear.hypothesis{car}
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Diagnostics for global cross-sectional dependence
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Diagnostics for global cross-sectional dependence

Testing for XS dependence

The CD test ’family’ (Breusch-Pagan 1980, Pesaran 2004) is based on transformations of the
product-moment correlation coefficient of a model’s residuals, defined as

ρ̂ij =

∑T
t=1 ûit ûjt

(
∑T

t=1 û2
it)1/2(

∑T
t=1 û2

jt)1/2

and comes in different flavours appropriate in N-, NT- and T- asymptotic settings:

CD =

√
2T

N(N − 1)
(

N−1∑
i=1

N∑
j=i+1

ρ̂ij )

LM =

N−1∑
i=1

N∑
j=i+1

Tij ρ̂
2
ij

SCLM =

√
1

N(N − 1)
(

N−1∑
i=1

N∑
j=i+1

√
Tij ρ̂

2
ij )

Friedman’s (1928) rank test and Frees’ (1995) test substitute
Spearman’s rank coefficient for ρ

Millo (Generali R&D and Univ. of Trieste) 9 / 23



Diagnostics for local cross-sectional dependence
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Diagnostics for local cross-sectional dependence

Introducing georeferentiation: the local CD tests (1)

Restricting the test to neighbouring observations: meet the W matrix!

Figure: Proximity matrix for Italy’s NUTS2 regions
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Diagnostics for local cross-sectional dependence

The local CD tests (2)

The CD(p) test is CD restricted to neighbouring observations

CD =

√
T∑N−1

i=1

∑N
j=i+1 w(p)ij

(
N−1∑
i=1

N∑
j=i+1

[w(p)]ij ρ̂ij)

where [w(p)]ij is the (i , j)-th element of the p-th order proximity matrix, so that
if h, k are not neighbours, [w(p)]hk = 0 and ρ̂hk gets ”killed”; W is employed here
as a binary selector: any matrix coercible to boolean will do

pcdtest(..., w=W) will compute the local test. Else if w=NULL the
global one.

Only CD(p) is documented, but in principle any of the above tests (LM,
SCLM, Friedman, Frees) can be restricted.
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Diagnostics for local cross-sectional dependence

Recursive CD plots

The CD test, seen as a descriptive statistic, can provide an informal
assessment of the degree of ’localness’ of the dependence: let the
neighbourhood order p grow until CD(p)→ CD

2 4 6 8 10 12

−
2

−
1

0
1

2
3

4

CD(p) stats vs. p

Lag order

C
D

(p
) 

st
at

is
tic

forthcoming as cdplot()
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ML estimators and ML-based tests for spatial panels

A recap on spatial models

Spatial econometric models have either a spatially lagged dependent
variable or error (or both, or worse. . . )

The two standard specifications:

Spatial Lag (SAR): y = ψW1y + Xβ + ε

Spatial Error (SEM): y = Xβ + u; u = λW2u + ε

The general model (Anselin 1988):

y = ψW1y + Xβ + u; u = λW2u + ε; E [εε′] = Ω

Hence, if A = I − ψW1 and B = I − λW2, the general log-likelihood is

logL = −N

2
lnπ − 1

2
ln|Ω|+ ln|A|+ ln|B| − 1

2
e ′e
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ML estimators and ML-based tests for spatial panels

The general estimation framework (Anselin 1988)

The likelihood is thus a function of β, ψ, λ and parameters in Ω. The
overall errors’ covariance can be scaled as B ′ΩB = σ2

e Σ. This likelihood

can be concentrated w.r.t. β and σ2
e substituting e = [σ̂2

e Σ]−
1
2 (Ay − X β̂)

logL = −N

2
lnπ−N

2
σ̂2

e−
1

2
ln|Σ|+ln|B|+ln|A|− 1

2σ̂2
e

(Ay−X β̂)′Σ−1(Ay−X β̂)

and a closed-form GLS solution for β and σ2
e is available for any given set

of spatial parameters ψ, λ and scaled covariance matrix Σ

β̂ = (X ′Σ−1X )−1X ′Σ−1Ay

σ̂2
e = (Ay−X β̂)′Σ−1(Ay−X β̂)

N

(1)

so that a two-step procedure is possible which alternates optimization of
the concentrated likelihood and GLS estimation.
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ML estimators and ML-based tests for spatial panels

Operationalizing the general estimation method

The general estimation method can be made operational for specific Σs
parameterized as Σ(θ) by plugging in the relevant Σ, Σ−1 and |Σ| into the
log-likelihood and then optimizing by a two-step procedure, alternating:

GLS : β = (X ′[Σ(θ̂)−1]X )−1X ′[Σ(θ̂)−1]Ay → β̂

ML : maxll(θ|β̂)→ θ̂

until convergence

The computational problem: Σ = Σ(θ, λ) and A = A(ψ) so all inverses
and determinants are to be recomputed at every optimization loop

Anselin (ibid.) gives efficient procedures for estimating the ”simple” cross-sectional SAR and

SEM specifications: see package spdep by Roger Bivand for very fast R versions. There are few

software implementations for more general models (notably, Matlab routines by Elhorst (IRSR

2003) for FE/RE SAR/SEM panels).
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ML estimators and ML-based tests for spatial panels

A slightly less general (panel) model

In this general framework, the availability of estimators is limited by that
of computationally tractable (inverses and determinants of-) error
covariances.
Let us consider a panel model within a more specific, yet quite general
setting, allowing for a spatially lagged response and the following features
of the composite error term (i.e., parameters describing Σ):

random effects (φ = σ2
µ/σ

2
ε )

spatial correlation in the idiosyncratic error term (λ)

serial correlation in the idiosyncratic error term (ρ)

y = ψ(IT ⊗W1)y + Xβ + u
u = (ıT ⊗ µ) + ε
ε = λ(IT ⊗W2)ε+ ν
νt = ρνt−1 + et
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ML estimators and ML-based tests for spatial panels

Available models and performance

Lag and error models can be mixed up, giving rise to the following
possibilities:

par 6= 0 µλρ µλ µρ λρ λ ρ µ (none)
ψ SAREMSRRE SAREMRE SARSRRE SAREMSR SAREM SARSR SARRE SAR

(none) SEMSRRE SEMRE SRRE SEMSR SEM SR RE OLS

where SARRE, SEMRE are the ’usual’ random effects spatial panels and
SAR, SEM the standard spatial models (here, pooling with W = IT ⊗ w)

My very naive, modular and high-level implementation of the estimation theory looks like

working! (thanks to the power of R and many simplifications taken from Baltagi, Song, Jung

and Koh, 2007). Computing times on Munnell’s (1990) data (48 US states over 17 years) are

43” for the SAREMRE and 160” for the full SAREMSRRE model. Furter optimizaton for speed

is on the agenda.
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ML estimators and ML-based tests for spatial panels

Baltagi et al.’s LM testing framework

Most applications concentrate on the error model. In this setting, Baltagi
et al. (2007) derive conditional LM tests for

λ|ρ, µ (needs SRRE estimates of û)

ρ|λ, µ (needs SEMRE estimates of û)

µ|λ, ρ (needs SEMSR estimates of û)

So a viable and computationally parsimonious strategy for the error model
can well be to test in the three directions by means of conditional LM tests
and see whether one can estimate a simpler model than the general one.

An asymptotically equivalent test, much heavier on the machine, is the
Wald test implicit in the diagnostics of the general model. The lag
specification can be tested for only the second way (the covariance is
based on the numerical estimate of the Hessian).
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ML estimators and ML-based tests for spatial panels

What’s next?

The CD, LM and SCLM tests are already in plm-1.0.0 currently on CRAN.
Expect

the Friedman and Frees tests and the XS robust pvcov() functions in
the next release

the spatial ML estimators and tests in a separate package based on
plm and spdep, to come on CRAN in the next months

(but you can get betas from me if you are interested: just email me at
giovanni_millo@generali.com)
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ML estimators and ML-based tests for spatial panels

Thanks

In alphabetical order,

Roger Bivand

Yves Croissant

Achim Zeileis

. . .

. . . and you, for your attention
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