Customer Heterogeneity in Purchasing Habit of Variety Seeking Based on Hierarchical Bayesian Model

University of Tsukuba

Kondo, Fumiyo N.; Kuroda, Teppei

Date: August 13, 2008

Place: Technische University of Dortmund

Agenda

- 1. Research Objective and Background
- 2. Analyzed Data
- 3. Analyzed model
 - a mixture normal-multinomial logit model in a hierarchical Bayesian framework
- 4. Result 1 < latent class VS hierarchical Bayesian >
- 5. Result2 < Bawa model Vs proposed model >
- 6. Summary and Future Research Topics

Research Review

- ◆ A product choice behavior is called as "inertia" if a customer chooses the same product as the previously purchased and "variety seeking" if it is a different product from the previous one. (Givon(1984), Lattin et al. (1985))
- These kinds of behaviors are frequently observed in the product category of "low involvement" (Dick and Basu (1994), Peter and Olson (1999)).

Research Review

- ◆ Consumers tend to purchase a "low involvement" product such as beverage or cake based solely on experience, inertia, or atmosphere. In addition to "inertia" or "variety seeking", Bawa (1990) proposed a model for segmentation purposes.
- ♦ It has an additional segment of "hybrid" customer, of which purchasing tendency changes from "inertia" to "variety seeking" or vice versa.

Illustration of purchase history by customer type

- Inertia : AAAAAAAA
- Variety seeking: ABCDCFGAFE
- Hybrid : AAABBBCCC

Research Objective

Research Objective

- To express product choice behavior in terms of Inertia / Variety Seeking toward product attribute by customer.
- 2. To explore effective marketing strategy.
- 3. To compare results with those by Latent class model.

model

 a mixture normal-multinomial logit model in a hierarchical Bayesian framework

Analyzed Data

Analyzed store:

5 super market stores around Tokyo

Analysis period: 2000.1.1~2001.5.31

Analysis subcategory:

Japanese tea - Chinese tea

1) extract 7000 customers by random sampling from all of 13238 panels.

Analyzed Data

- < latent class model vs hierarchical Bayesian model >
- 2 screening
 - A. exclude simultaneous purchase opportunities
 - B. <u>include</u> customers who purchased **once or more** in 3 periods (2000.1.1 ~ 6.30; 7.1 ~ 12.31; 2001.1.1 ~ 5.31)
 - C. include customers with 24 times or more purchases (only heavy users)
 - D. exclude customers with once or less brand switching
 - E. <u>exclude</u> customers with 3 times or less purchases on hold-out samples (in the third period)

Multinomial Logit Model (MNL)

Uijt: utility of product j for customer i in period t

Vijt: fixed utility

ε_{ijt:} random utility (double exponential distribution)

X_{ijt}: explanatory variable of product j for customer i in period t

β: parameter for customer i

$$U_{ijt} = v_{ijt} + \mathcal{E}_{ijt} \quad v_{ijt} = X_{ijt} \beta_i$$

Explanatory Variable Inertia / Variety seeking

repeat purchasing times r of a brand and r^2

(Bawa(1990,1995), Sakamaki(2005))

let the latest brand switching time as period S

ret the latest brand switching time as period S
$$r_{itj} = \sum_{t=1}^{t-1} y_{itj} \quad Z = -\frac{\exp(\text{purchasing interval} - a)}{1 + \exp(\text{purchasing interval} - a)} + 1$$

$$r \times Z \text{ and } (r^2) \times Z$$

Promotion variable(Seetharamann et al(1998), Kawabata(2004))

- discount rate; displays; flyers for each subcategories of Japanese or Chinese tea
- Constant term

Explanatory Variable

<repeat purchasing times r & r^2 >

 v_{1ijt} : fixed utility of inertia / varietysee king for customer i in period t brand j r_{ijt} : repeat purchasing timesfor customer i in period t brand j r_{ijt}^2 : the second power of r_{ijt}

 β_{i1}, β_{i2} : parameters

Explanatory Variable <purchasing interval>

$$Z = -\frac{\exp(\text{purchasing interval} - a)}{1 + \exp(\text{purchasing interval} - a)} + 1$$

Latent class model

 π_s : probability of segemnt s

 $p_{it}(j | \alpha_s)$: choice probability of product j beloging segemnt s

$$p_{it}(j|\pi,\beta) = \sum_{s=1}^{S} p_{it}(j|\beta_s) \pi_s$$

where
$$\sum_{s=1}^{S} \pi_s = 1$$
 $(\pi_s \ge 0, \forall s = 1, \cdots, S),$

$$\pi = [\boldsymbol{\pi}_1, \cdots, \boldsymbol{\pi}_s], \beta = [\boldsymbol{\beta}_1, \cdots, \boldsymbol{\beta}_s]$$

A mixture normal-multinomial logit model in a hierarchical Bayesian framework (Rossi et al. (2005))

$$y_{ijt} \sim MNL(P_{it}(X_{ijt}, \beta_i))$$
 (MNL:multinomial logit model)

$$\beta_{i} \sim N(\mu_{ind_{i}}, \Sigma_{ind_{i}})$$

$$\mu_{k} \sim N(\mu, \Sigma_{k} \otimes a_{\mu}^{-1})$$

$$\Sigma_{k} \sim IW(v,V)$$

$$ind_i \sim Multinomial_K(pvec)$$
 $pvec \sim Dirichelet(\alpha)$

 $P_{it}(Xijt, \beta_i)$: choice probability of product j for customer i in period t

X_{ijt}: explanatory variable of product j for customer i in period t β_i: parameters for customer i

Parameter Distribution Estimation Methods& Information Criterion

- Parameter Distribution Estimation Methods
 - · latent class model: Maximum Log-likelihood
 - hierarchical Bayesian model: MCMC method
- Information Criterion
 - AIC(Akaike)
 - BIC(Schwarz)
 - CAIC(Bozdogan)
 - •DIC(Spiegelhalter et al., 2002)

The smaller value of information criterion, the better model.

Analysis Result 1

Iatent class model: for heavy users of 63 panel >
-Determination of No. of Segments-

	AIC	BIC	CAIC
1segment	3892.91	3988.52	3988.52
2segment	3910.15	4106.97	4106.99
3segment	3925.08	4223.13	4223.16

- Hypothesis A(2 segments): VS-Inertia & Hybrid
- Hypothesis B(3 segments): VS-Inertia-Hybrid

For 1 segment, the model was the best with the minimum value for all of Information Criterions

Analysis Result2

<comparison of 3 models : for heavy users of 63 panel > -hit rate & Information Criterion-

model	Log-L	DIC	Hit rate1	Hit rate2
Latent class model			0.749	0.624
H. Bayes model (1 normal dist.)	-958	5425	0.798	0.680
H. Bayes model (3 normal dist.)	-942	5333	0.811	0.734

- Two hierarchical Bayesian models that can estimate parameters for each customer are better than latent class model in terms of hit rate.
- a mixture normal (3 dist.)-multinomial logit model in a hierarchical Bayesian framework is selected as the best model for all of critera.

Analyzed Result3

<Bawa model vs proposed model:</p>
for heavy users of 129 panel > -hit rate & DIC-

	Log-L	DIC	Likelihood	Hit rate1	Hit rate2
Bawa model	-2147	12251	-2210	0.856	0.713
Model A	-2151	12287	-2227	0.860	0.756
Model B	-2139	12223	-2206	0.863	0.750
Model C	-2145	12230	-2210	0.860	0.736

- Bawa model : no purchase interval considered
- ♦ Proposed model A : a=10
- ♦ Proposed model B : a=15
- Proposed model C: a=20

Proposed model B is the best model than Bawa model in terms of DIC and hit rate1.

Analysis Result4<model B> -response to promotion for Japanese tea-

		j-discount	j-display	j-flyers	No. customers
Japanese	Inertia	1.55	-0.21	0.13	41
tea	VS	1.05	0.37	0.34	10
	Hybrid	1.14	-0.49	0.59	26
	Zero-order	3.79	0.08	0.21	52

- Zero-order: high response to discounts
- Inertia · VS · Hybrid : low response to discounts
- ♦ A strategy different from usual discounts for the customers of Variety Seekers are necessary!

Summary

- Latent class model
 No valid segmentation was possible.
- Hierarchical Bayesian Models
 - It is possible to estimate parameters for all customers.
 - It is possible to do the optimum promotion for each Hybrid customer.
 - For VS customers, it may be also necessary to consider brand choices of previous 2 purchases.

Future Research Topics

- Analysis on data on different shop type with different customer characteristics or on different usage scenes
- To vary the decreasing speed of tendency of Inertia or Variety seeking by customer accompanying with purchasing interval.

Reference

- [1]Ohtsu Umezu(2002), Recency Effect on Traffic Advertisement, Nikkei Advertisement Research Report, Vol. 202, p21~27.
- [2]Bawa(1990), "Modeling inertia and variety seeking tendencies in brand choice behavior, *Marketing Science*, Vol.9, No.3, p.263~278.
- [3]Givon(1984), "Variety seeking through brand switching", *Marketing Science*, Vol.3, No.1, p.1~22.
- [4]Lattin,J.M.and Leign,M(1985), "Market share response When Consumers seek variety", *Journal of marketing Research*, Vol.29, No.2, p.227~237
- [5]Rossi et al(2005), Bayesian Statistics and Marketing, John Wiley and Sons.
- [6] Spiegelhalter et al(2002), "Bayesian measures of model complexity and fit", Journal of the Royal Statistical Society Series B, p.583~639.

Thank you for patience!