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Abstract

Robustified rank tests, applying a robust scale estimator, are investigated for reliable and fast shift detection in time series. The
tests show good power for sufficiently large shifts, low false detection rates for Gaussian noise and high robustness against outliers.
Wilcoxon scores in combination with a robust and efficient scale estimator achieve good performance in many situations.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Sudden level shifts in time series, also called edges or jumps, represent important information on the course of a
variable. Reliable automatic rules for level shift detection with a short time delay are needed for online analysis. A basic
demand is to distinguish level shifts from minor fluctuations and short sequences of irrelevant outliers. We formalize
the task using a simple additive components model, decomposing the observations (Yt ) as

Yt = �t + ut + vt , t ∈ Z, (1)

where (�t ) is the time-varying level of the time series, which is assumed to vary smoothly with only a few sudden
shifts, while ut is observational noise with median zero and possibly time-varying variance �2

t . The impulsive (spiky)
noise vt represents an outlier generating mechanism. It is zero most of the time, but occasionally takes large absolute
values.

Many filtering procedures are available for approximation of �t . Linear filters such as moving averages are efficient
for Gaussian noise, but they are sensitive to outliers. Running medians approximate the level �t in the center of a moving
window (yt−k, . . . , yt+k) by the median, �̃t = med(yt−k, . . . , yt+k), t ∈ Z. They offer the advantages of removing
outliers and better preserving jumps (Tukey, 1977; Nieminem et al., 1989).

Sometimes preservation of level shifts for better visualization is not enough and we want shifts to be detected
automatically. There is a growing literature on robust control charts for change-point detection in time series (Davis
and Adams, 2005). However, these charts typically need strong assumptions for the in-control process and the existence
of a steady state, they react to several types of structural changes and they aim at a minimal average delay of detection,
while sometimes the exact delay does not matter if it is too large. We, however, consider detection rules which are
particularly designed to detect level shifts within a given time span and require only weak assumptions. Two-sample
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rank tests as suggested by Bovik et al. (1986) and Lim (2006) are promising candidates for this, also because of their
simplicity. The ranks of the data in a moving data window yt+1, . . . , yt+k of width k are determined within a longer
window including h further observations yt−h+1, . . . , yt left of t. An upward (downward) shift between times t and
t + 1 is detected if the ranks of yt+1, . . . , yt+k , or suitable transforms of them are large (small).

We investigate rank tests for shift detection in time series with small delays, modifying them to distinguish outlier
sequences of a certain length from long-term shifts. Section 2 presents rank tests and analytic measures of their
robustness. Section 3 reports a simulation study. Section 4 applies the methods to time series for further comparison
before some conclusions are drawn.

2. Shift detection

To formulate and compare rules for shift detection, we assume an ideal edge of height � after a time point t ∈ Z:

�t+j =
{

�, j �0,

� + �, j > 0.
(2)

For detection of a positive (negative) shift at time t we test H0 : � = 0 vs. H+
1 : � > 0 (H−

1 : � < 0). We restrict to a
single time point in the following, considering the n = h + k observations yt−h+1, . . . , yt , yt+1, . . . , yt+k with median
�̃t , h�k. Guidelines for the choice of h and k will be given later.

2.1. Tests based on linear rank statistics

Tests based on linear rank statistics have been suggested for edge detection, in particular the Wilcoxon and the median
test (Bovik et al., 1986). Let yt(1) � · · · �yt(n) be the ordered observations within the window, and r−h+1, . . . , rk the
ranks of yt−h+1, . . . , yt+k in this sequence. A general linear rank statistic of the most recent k observations can be
written as

S+ =
k∑

j=1

a(rj ),

with scores a(1), . . . , a(n). The complement of S+ is denoted by S− = ∑h−1
i=0 a(r−i ) = ∑n

i=1 a(i) − S+. The linear
rank statistic

L = (h + k)[h(S− − a)2 + k(S+ − a)2]∑h+k
i=1 (a(i) − a)2

, (3)

with a = n−1∑n
j=1a(j), is distribution-free and asymptotically �2

1-distributed under H0 in case of a constant variance.

The Wilcoxon test uses a(i)=i, i=1, . . . , n, i.e. S+=∑k
i=1ri . The normalized Wilcoxon statistic W=S+−k(k+1)/2

takes values between zero and k(3k + 1)/2 if h= k. The Wilcoxon scores lead to estimators and tests which are almost
as effective under Gaussian noise as methods based on averages, while being more robust to deviations from this
assumption (McKean, 2004).

The median test uses a(i) = 1, i = �n/2� + 1, . . . , n, and a(i) = 0 otherwise. Then S+ corresponds to the number
of values in yt+1, . . . , yt+k larger than the median of the full window and takes values between zero and �(n + 1)/2�.
The median test is regarded as reliable even in case of heavy-tailed noise.

2.2. Robust scale estimation

Bovik et al. (1986) suggest subtracting (adding) a threshold �0 from yt+1, . . . , yt+k before applying a rank test to
detect only relevantly large upward (downward) shifts. They recommend to choose �0 larger than the noise standard
deviation. If �t can be time-varying, the threshold should also vary over time, i.e. �0 =�0(t), to obtain scale-equivariant
procedures. Assuming that the standard deviation is almost constant within the left-hand window yt−h+1, . . . , yt , we
calculate a robust estimate �̂t of �t from it and choose �0(t) as a fixed multiple d�̂t . We do not include yt+1, . . . , yt+k

in the estimation of �t to avoid masking of a shift at time t because of a biased estimate of �t .
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Robust scale estimators have been discussed before in the context of time series filtering (Gather and Fried, 2003).
Based on these results we select some methods for further comparison. The asymptotic explosion breakdown point of
the first four of them is 50%, while it is only 25% for the simple and popular interquartile range (IQR). The classical
median absolute deviation (MAD) and IQR require calculation of sample quantiles as measures of location. The other
methods are based on pairwise differences and do not need location estimates. This might be advantageous in case of a
level shift since then, e.g. the MAD uses a biased centering. We use the following scale estimators applied to a window
yt−h+1, . . . , yt :

• The MAD about the median (Hampel, 1974):

MADt = cM
h med(|yt−h+1 − �̃t−|, . . . , |yt − �̃t−|), (4)

where cM
h is a correction to achieve unbiasedness under Gaussian noise and �̃t−=med(yt−h+1, . . . , yt ) is the median

of the first h observations in the window to the left of time point t. For large h, cM
h ≈ cM∞ = 1.4826.

• The length of the shortest half (LSH) (Rousseeuw and Leroy, 1988; Grübel, 1988), which uses the length of the
shortest interval containing 50% of the data:

LSHt = cL
h min(yt(h) − yt(h−m), . . . , yt (m+1) − yt(1)), (5)

where m = �h/2	 and yt(1), . . . , yt (h) are the ordered values yt−h+1, . . . , yt .
• The Qh-estimator (Rousseuw and Croux, 1993):

Qh,t = c
Q
h (|yt−i − yt−j |, 0� i < j �h − 1)(( �h/2�+1

2

)), (6)

which is approximately the first quartile of all absolute pairwise differences, and c
Q
h ≈ c

Q∞ = 2.2219 for large h. The
algorithm of Croux and Rousseeuw (1992) allows computation of Qh,t in O(h log h) time.

• The Sh-estimator (Rousseuw and Croux, 1993) using nested medians of the absolute differences:

Sh,t = cS
h med

i
med
j 
=i

|yt−i − yt−j |, (7)

with cS
h ≈ cS∞ = 1.1926 in large samples.

• The IQR, which calculates the difference between the upper and the lower quartile:

IQRt = cI
h(y(0.75h) − y(0.25h)), (8)

with cI
h ≈ cI∞ = 0.7413 for large h. We note that different definitions are available for the sample quartiles, y(0.75h)

and y(0.25h), and that we use the IQR implemented in the open-source software R.

Fig. 1 compares the finite-sample efficiencies of the methods as measured by their variances under Gaussian noise.
The efficiency of the classical MAD relative to the usual standard deviation is rather low and tends to be 36.7%. We
use MADt as reference in Fig. 1, so that the values exceeding 100% indicate that we can improve on the low efficiency
of MADt while keeping its explosion breakdown point. Qh,t is the most efficient robust estimator if the width is
moderately large, h�10, with an asymptotic efficiency of 82.3%. Sh,t is the second most efficient estimator for most
h, with an asymptotic efficiency of 58.2%. For small h ∈ {3, 5, 7, 9} it is even more efficient than Qh,t . LSHt has the
same asymptotic efficiency as MADt , but it is slightly more efficient for small Gaussian samples. IQRt is only efficient
for some small widths.

2.3. Test resistances

One reason for median filters being popular is their robustness against a substantial amount of contamination (outliers).
Breakdown points are simple measures of robustness. Given a vector of observations y= (y1, . . . , yn), the finite sample
replacement breakdown point represents the minimal fraction of data set to arbitrary values that changes the estimate
by any amount. This is a local concept since by definition the breakdown point depends on the sample. Fortunately,
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Fig. 1. Efficiencies of the LSH (dashed), Qh (solid), Sh (bold dotted) and the IQR (dotted) relatively to the MAD for different sample sizes h.

the breakdown point of the median is the same for all samples, namely �(n + 1)/2�/n, converging to 50% with
increasing n.

Of course, the outcome of a test should neither be determined by a few outliers. Let Um(y) be a neighborhood of
y consisting of all data vectors z = (z1, . . . , zn) with zi 
= yi for at most 0�m�n positions. Let � be the decision
function of the test, �(z)= 1 and �(z)= 0 representing rejection and non-rejection of the null hypothesis, respectively.
Ylvisaker (1977) suggests the global concept of resistance of a test to acceptance and rejection. Deviating slightly from
his definition, these quantities are

�A = 1

n
min

{
m�0 : sup

y∈Rn
inf

z∈Um(y)
�(z) = 0

}
, and

�R = 1

n
min

{
m�0 : inf

y∈Rn
sup

z∈Um(y)

�(z) = 1

}
, respectively.

Ylvisaker considers modifications to occur only at the last positions for simplification. For unstructured data the resulting
resistances are usually identical to those obtained when modifications are allowed at arbitrary positions as it is done
here. The resistances depend on the significance level but not on the sample since the supremum (infimum) over all
possible y is taken, i.e. the test breaks down if it does so for any sample. We cannot use worst case data y in the
definition since in case of �(y) = 0 we always have infz∈Um(y) �(z) = 0. A computationally more expensive approach
to overcome the dependence on the sample is expected resistance (Coakley and Hettmansperger, 1992).

We apply the concept of resistances to search for tests which can detect a level shift in spite of nearby outliers. For
this we analyze two-sample tests comparing the levels in the left- and the right-hand window. Let y11, . . . , y1h and
y21, . . . , y2k be the corresponding samples. It is easy to see that the test based on the difference of the arithmetic means,
ȳ2 − ȳ1, applied in case of a known scale � posses resistance to rejection and to acceptance both equal to 1/n at any
significance level �, with n = h + k. This test can easily be mislead since a single outlier can either cause incorrect
detection of a shift or mask a shift so that it is not detected.

The two-sample t-test for the situation of an unknown scale also has got resistance to acceptance equal to 1/n.
Moving one observation is always sufficient to get a difference of the arithmetic means of zero. Hence a sin-
gle outlier can mask a level shift of any size for the t-test. The resistance to rejection is more difficult to derive.
To increase the squared test statistic by an arbitrary amount, so that the p-value becomes zero and thus smaller
than any �, needs modification of at least min{h, k} out of n observations. Nevertheless, fewer modifications can
have a large, albeit bounded effect, and can make the test statistic exceed the critical value at certain significance
levels �.

Hence the number of outliers a test for shift detection can deal with without becoming unreliable does not only
depend on the window widths h and k, but also on �. In the following we tune all tests to obtain � = 0.1% in case of
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Table 1
Critical values C, test sizes � (in %), lower bounds for the resistances to rejection (RR) and exact values of the resistances to acceptance (RA) for
the median (top) and the Wilcoxon test (bottom) and different values of h = k (n = h + k)

k 6 7 8 9 10 11 12 13 14 15

C 6 7 8 9 9 10 11 11 12 13
� 0.216 0.058 0.016 0.004 0.109 0.035 0.011 0.120 0.042 0.015
n · RR 5 6 7 8 8 9 10 10 11 12
n · RA 1 1 1 1 2 2 2 3 3 3

C 36 48 61 76 91 108 127 148 169 191
� 0.216 0.117 0.093 0.078 0.105 0.106 0.089 0.10 0.10 0.10
n · RR 5 5 5 6 6 6 6 7 7 7
n · RA 1 1 1 1 1 2 2 2 2 3

Gaussian noise, so that we expect to detect a level shift incorrectly only once in 1000 observations. We note that for
ordinary rank tests this excludes very small choices of h and k since they cannot obtain such a small false detection
rate in small samples. Upper limits for h and k are imposed by the time periods in which the level �t can be assumed
to be constant, and for k by the admissible time delay of detection in online analysis. We choose windows of the same
width h = k for simplicity. This provides some protection against unequal variances in the two windows (Staudte and
Sheather, 1990).

Table 1 shows critical values for the Wilcoxon statistic W and for the number S+ of observations larger than the
median corresponding to an approximate value of � ≈ 0.1% in two-sided testing. The exact test sizes as well as the
corresponding resistances to rejection and to acceptance are given as well. We note that the resistances to rejection are
hard to derive and give lower bounds instead, calculated for a situation with the observations from the two windows
in alternating order. These bounds are satisfactory for our purpose since the resistances to acceptance are much lower
and thus more critical.

We need to choose h = k = 7 to obtain � = 0.1% if h = k. For the median test h = k = 10 is necessary to
obtain a resistance to acceptance of 2/n and to prevent that a shift of any size can be masked by a single out-
lier. The resistances of the Wilcoxon test are smaller, we even need h = k = 11 for this. The small resistances
look surprising but are simply due to the fact that for h = k�9 all observations in the right-hand window need
to be either larger or smaller than those in the left one for shift detection. For the median test we have got the
formula n · RA = k − C + 1.

2.4. Robustified rank tests

Given the structural weakness of both the Wilcoxon and the median test observed above we robustify rank tests,
aiming at higher resistances. We fix the critical values for W and S+ to be maximal under the restriction that we always
want to detect an upward (downward) shift if, after subtracting (adding) a threshold, the largest (smallest) �(k + 1)/2�
observations are in the right-hand window. Putting things the other way round, this gives us a chance to detect an
upward (downward) shift even if almost half of the observations (�(k − 1)/2� out of k) in the right-hand window are
extremely small (large). We thus fix critical values for W and S+ guaranteeing high resistances without taking the
desired false detection rate � into account. For h = k = 7, e.g., we choose 28 and 4, respectively. Then � is regulated
by subtracting (adding) a suitable multiple �0(t) = d�̂t of one of the robust scale estimates presented in Section 2.2
from the observations in the right-hand window when testing for an upward (downward) shift. We determine suitable
constants d achieving � = 0.1% in simulations. Two one-sided tests are performed at each time point to detect upward
and downward shifts.

The resistance to acceptance of these tests is at least min{�(k + 1)/2�/n, �∗h/n}, with �∗ being the explosion
breakdown point of the scale estimator �̂: let y1 = (y11, . . . , y1h)

′ be arbitrary observations in the left-hand window.
When moving less than h · �� of them, the resulting scale estimate is still bounded, say smaller than M(y1). Let now
the observations in the right-hand window y2 = (y21, . . . , y2k)

′ be such that min(y21, . . . , y2k) > max(y11, . . . , y1h) +
dM(y1). By construction, the modified values obtained from y2 after subtracting d times the scale estimate for the left
window are all larger than all values in y1, even after modifying at most h · �� −1 observations in the left-hand window.
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If we then move at most �(k − 1)/2� observations in y2, by construction there are still enough unmodified observations
in y2 to indicate a shift.

The resistance to rejection of the robustified tests is at least �(k + 1)/2�/n. Let y1 = (y11, . . . , y1h)
′ be arbitrary,

with all values different, and all values of y2 = (y21, . . . , y2k)
′ in the median interval of y1 for k even, and in between

the neighbors of the median of y1 for k odd. The tests will not reject the null for any sample obtained from this one by
less than �(k + 1)/2� modifications.

3. Monte Carlo experiments

We perform a simulation study to compare small-sample properties of the detection rules introduced in Section 2.
We use the components model (1) and analyze the behavior at a single time point t. The suitable choice of the window
widths h and k depends on the application, i.e. on the situations a filtering procedure needs to handle. For resisting
patches of subsequent outliers we must choose h and k sufficiently large, while upper limits are imposed by the duration
of periods in which the level can be assumed to be approximately constant, and for k by the admissible time delay. For
simplicity, we concentrate on windows with the same width h = k, and use the same k for all rules to achieve the same
delay. The level is assumed constant within both windows, i.e. we consider ideal edges, and the observational noise
(ut+j ) is standard Gaussian if not stated otherwise. The basic experiments are performed for h = k = 7, treating the
level as constant only for short time horizons. We repeat the experiments for h = k = 6, for which the ordinary rank
tests had to be designed as liberal, and for h = k = 15 to verify the results.

3.1. Power for different types of noise

First we compare the power of the tests for detecting shifts of different heights � = 0.5, 1, . . . , 10 in standard
Gaussian white noise. We generate 10 000 windows for each height and derive the power as the percentage of cases
in which a shift is detected, see Fig. 2 for h = k = 7. The ordinary Wilcoxon test shows almost the same power as
the t-test. The robustified rank tests are less powerful, with the median tests being worse than the Wilcoxon tests.
Sh,t leads to the largest power if h = k = 7, followed by IQRt and Qh,t . The tests based on MADt or LSHt are
the least powerful. This ordering corresponds to the factor d in the threshold d�̂t as it is the smallest for Sh,t and
the largest for MADt . This in turn can be explained by the efficiencies of the estimators which is the highest for
Sh,t and the smallest for MADt if k = 7, see Fig. 1. For h = k = 6 and h = k = 15, the Qh leads to the largest
power in agreement with its high efficiency. Sh,t and IQRt follow, while LSHt and MADt again lead to the least
powerful tests.

Identical measurements due to, e.g. rounding yield a problem for robust scale estimators. A simple solution is
‘wobbling’, i.e. adding random noise. We generate data as before and round all observations to the nearest 0.5. The
observational noise thus takes on one of the nine values −2, −1.5, . . . , 2 with more than 95% probability. We then
add uniform U(−0.25, 0.25) noise to all values to recover the full range. The results do not appear sensitive to such
changes: wobbling allows to maintain the properties of the methods almost completely.

There are also only small changes in the ordering of the methods when generating the noise from a t-distribution
with three degrees of freedom. The differences between the t-test and the rank tests are somewhat reduced as compared
to the Gaussian situation if h = k = 6 or h = k = 7, while for h = k = 15 robustified Wilcoxon tests perform almost as
well as the t-test, and the ordinary Wilcoxon test does even better, see Fig. 2.

3.2. Single outlier

Next, we check the sensitivity of the methods against a single outlier, starting with the false detection rate. We
replace one observation by an additive outlier of size s ∈ {1, 2, . . . , 20} and calculate the error of first kind from 20 000
simulation runs for each s, see Fig. 3 for h = k = 7. The error rate of the t-test decreases to zero since the limit of the
squared test statistic is 1 as the outlier size tends to infinity. An outlier increases the false detection rate of the rank
tests to up to 0.2–0.3% while it is in the right-hand window, with Qh,t and LSHt providing slightly more stable results
than the other methods. When the outlier enters the left-hand window it still increases the false detection rates of the
robustified rank tests, but to a smaller amount than before. This continuing increase might be due to a small effect on
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Fig. 2. Power for shifts of different heights in case of Gaussian noise with h = k = 7 (left) and t3 noise with h = k = 15 (right), Wilcoxon (top) and
median tests (bottom): �0 = 0 (dash-dot), MAD (dashed), IQR (dotted), LSH (bold dashed), Qh (bold solid) and Sh (bold dotted); the t-test (solid)
is included for comparison.

the robust scale estimates in small samples. The influence of a single outlier decreases with the window width as could
be expected.

We also investigate the effect of an outlier on the power of the procedures in case of a shift of height 10� and h=k=7.
We replace either one value in the left-hand window by a positive outlier of size 20�, or one in the right-hand window by
a negative one, see Fig. 3 for the powers from 10 000 simulations runs. The power of the two-sample t-test approaches
zero as the outlier size becomes larger than the height of the shift. For the ordinary rank tests this happens even earlier.
A few outliers can prevent shift detection when using ordinary rank tests with a short window. These findings confirm
the relevance of the resistances to acceptance given in Section 2.3 in practice. The power of the robustified rank tests
remains almost unaffected by an outlier in the right-hand window, even in case of small samples. An outlier in the
left-hand window, i.e. just before the shift, causes a moderate loss of power. This effect might again be due to a slight
increase of the scale estimate. It stops increasing as the outlier size becomes larger than 4�.

The results for h = k = 6 and h = k = 15 are similar to those above. Choosing longer windows reduces the loss of
power of the two-sample t-test and the ordinary rank tests, but such choices are not always possible and also lead to
results inferior to those of robustified rank tests with robust scales.
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Fig. 3. Power for a shift of size 10� in case of an outlier in the left window (left) and false detection rate in case of an outlier in the right window
(right), Wilcoxon (top) and median tests (bottom): �0 = 0 (dash-dot), MAD (dashed), IQR (dotted), LSH (bold dashed), Qh (bold solid) and Sh (bold
dotted); t-test (solid); h = k = 7.

3.3. Multiple outliers

Next, we investigate the performance in case of multiple outliers. Starting from a steady state, we insert an increasing
number of outliers of the same size into one window. Fig. 4 shows the detection rates for h = k = 7 obtained from
10 000 simulations runs each. The t-test needs at least six (out of seven) deviating observations to detect a shift. This
resistance is not desirable since a situation with five shifted observations is closer to a shift with two outliers in a sense
than to a steady state with five outliers. Two outliers of the same size as the shift can mask a shift for the t-test, like
one outlier larger than the shift. For the ordinary rank tests all observations must be shifted to guarantee detection,
see Section 3.2. The robustified rank tests signal a shift of size 10� reliably if the outliers are in the right window.
The methods are almost unaffected if less than half of the observations are deviating (three out of seven), and mostly
indicate a shift whenever more than half of the observations are shifted.

The situation gets more difficult when the outliers are in the left-hand window, before the shift. All tests rarely detect
a shift in case of four outliers then. Only Sh,t allows detection with high probability in case of five deviant observations,
a situation which could arise from two outliers occurring just before a shift. The other scale estimators yield a smooth



R. Fried, U. Gather / Computational Statistics & Data Analysis 52 (2007) 221–233 229

0

0

20

40

60

80

100

number of outliers

d
e
te

c
ti
o
n
 r

a
te

 [
%

]

0

20

40

60

80

100

d
e
te

c
ti
o
n
 r

a
te

 [
%

]

0

20

40

60

80

100

d
e
te

c
ti
o
n
 r

a
te

 [
%

]

0

20

40

60

80

100

d
e
te

c
ti
o
n
 r

a
te

 [
%

]

1 2 3 4 5 6 7 0

number of outliers

1 2 3 4 5 6 7

0

number of outliers

1 2 3 4 5 6 70

number of outliers

1 2 3 4 5 6 7

Fig. 4. Percentage of detected shifts in case of an increasing number of observations shifted by 20� in the left or by 10� in the right window, Wilcoxon
(top) or median tests (bottom), h = k = 7: �0 = 0 (dash-dot), MAD (dashed), IQR (dotted), LSH (bold dashed), Qh (bold solid), Sh (bold dotted);
t-test (solid).

increase of the detection rate with increasing number of deviations. Generally, the most efficient scale estimators result
in the largest power if the majority of the observations is shifted. Only the tests using IQRt perform as poorly as the
t-test, since IQRt increases strongly if two to five out of seven observations are deviating. The robustified rank tests
show higher detection rates in case of four or five observations shifted by a larger amount of 20� in the left-hand
window, but only Qh,t leads to a good power in case of four shifted observations, thus allowing the construction of
robustified rank tests with consistent behavior for huge shifts.

We find similar results for h = k = 6. The robustified rank tests detect a shift if more than three observations in the
right-hand window are shifted, with Qh,t yielding the largest powers according to its high efficiency. A shift is rarely
detected by any method in case of up to three outliers in either window. At most one outlier before a shift is tolerated
with high power since all scale estimators are affected by two outliers within six observations.

For h= k = 15 Fig. 5 considers a smaller shift of height 6�. The detection rate of the t-test increases from six to nine
shifted observations. The robustified rank tests are again rather consistent if the outliers are in the right-hand window.
They resist about five outliers well and detect a shift reliably in case of eight outliers. Again the most efficient estimators
yield the most powerful tests. If the outliers are in the left-hand window only Qh,t leads to a reasonable power in case
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Fig. 5. Percentage of detected shifts in case of an increasing number of observations shifted by 6� in the left or the right window, Wilcoxon (top)
and median tests (bottom), h = k = 15: �0 = 0 (dash-dot), MAD (dashed), IQR (dotted), LSH (bold dashed), Qh (bold solid), Sh (bold dotted); t-test
(solid).

of eight shifted observations. Tests using IQRt can be easily mislead by outliers before a shift because of its rather low
breakdown point.

4. Application

For further illustration we apply the procedures to a time series of length N = 500 generated from the components
model (1), see Fig. 6. The underlying signal (�t ) is the blocks function (Donoho and Johnstone, 1994), a benchmark
example for edge-preserving smoothing. This signal is overlaid by Gaussian noise with time-varying, signal dependent
standard deviation �t = 1 + |�t |/20. We replace a total of 24 observations by 12 isolated and six pairs of outliers of
size 8. We do not only want to preserve the edges, but detect them with a small time delay and without unnecessary
false alarms.

We filter this time series by a running median with window width 15. The rules for shift detection investigated
above are applied to improve the results, analyzing at each time point t the ranks of yt+1, . . . , yt+7 as compared to
yt−7, . . . , yt−1, i.e. we choose the widths h = k = 7. Detection of a shift allows to take some appropriate action.
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Fig. 6. Time series (bold dots) generated from the blocks function (bolt dotted) with time-varying noise, and some time periods: running median
(dashed), ordinary rank tests (dash-dot), robustified Wilcoxon test with Qh (solid) and Sh (bold solid).

We calculate a simple estimate of the time point at which the level has shifted as follows: if at time t a shift is detected
without a previous alarm at t − 1, a candidate time point for the shift is just before the first t + j , j > 0, for which yt+j

is closer to the median �̃t+ of yt+1, . . . , yt+7 than to the median �̃t− of yt−7, . . . , yt−1. Instead of the median of the full
window we then take the median of the data set up to the candidate time t + j , verifying (and possibly changing) the
candidate time point in each step. From time point t + j on we then use the median of the current right-hand window
until returning to the standard procedure at time t + j + 4.

As we have seen before false alarms are rarely triggered by any of the rules. Accordingly, the results of all methods
are identical during a steady state without shift. Fig. 6 depicts several parts of the series in which one or several shifts
occurred along with some filter outputs. The shifts at times 50 and 106 are neither detected by the t-test nor by the
ordinary rank tests. In the first case the reason is masking by the pair of outliers right after the shift. The filters applying
one of these rules therefore do not adapt early enough to the shift or smear it slightly, like the running median without
detection rules. The latter additionally smooths the shifts at times 66 and 75 somewhat. The robustified median tests,
just like the Wilcoxon tests except for Sh,t and LSHt , do not detect the shift at t = 75 before this time point. Similarly,
the ordinary rank tests detect the shifts at t = 325 and 380 rather late.
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In general, the robustified Wilcoxon test using Sh,t gives the best results as could be expected in view of the results
from Section 3. We note that a smoother filter output could be obtained easily using one of these procedures in
combination with exponential smoothing between the identified level shifts.

5. Conclusions

Tests based on linear rank statistics, in particular the Wilcoxon and the median test have been suggested repeatedly
for robust edge detection in images or time series. However, although they are insensitive to deviations from normality,
they nevertheless can be mislead by a few outliers masking a shift.

Modification by a threshold has been suggested with the aim of detecting only relevantly large shifts. This idea can
be used for robustification of rank tests, using a multiple of a robust scale estimate for the threshold. The resulting
robustified rank tests are no longer distribution-free, but they resist outliers much better and distinguish reliably large
level shifts from a steady state even if almost one quarter of the observations included in the testing are outlying. A
threshold additionally reduces the many false detections by ordinary rank tests caused by positive autocorrelations
without eliminating them completely.

A robustified median test in combination with Qh,t was already used by Fried (2004). Based on our results we can
indeed recommend Qh,t , or Sh,t for certain window widths since highly efficient scale estimators yield the highest
power for shift detection within a short time delay specified before. We have shown that the power can be further
increased without loosing robustness by using Wilcoxon scores. Given the importance of the efficiency of the scale
estimation we expect further improvements by incorporating information on previous scale estimates. Exponential
smoothing is a natural candidate if the variability varies smoothly, while shift-preserving smoothers should be applied
if the variability shows abrupt changes. Another possibility is to increase the width of the left-hand window used for
the scale estimation and the reference level, but then we need to rely on the level being approximately constant during
longer time periods. Experiments not reported here show that a substantial increase in power is possible in this way
with the ordering of the methods being essentially the same as reported above.

An issue not addressed in detail here is the action to be taken after a shift is detected. As opposed to the t-test and
the ordinary rank tests the robustified rank tests indicate a level shift during several subsequent time points as long as
the majority of the observations in one window is on a different level than the observations in the other window. As
pointed out in Section 4, an estimate of the time point of the jump is needed if we want to use different level estimates
before and after the shift. We might also want to reduce the window width close to the level shift for reducing the bias
of the estimation there. This is especially important when using a longer left-hand window for comparison since we
must only include observations coming from the same level in it.

Many more rules have been suggested for shift detection, e.g. median comparisons. A comparison to the robustified
rank tests is a task for further research. The tests developed here offer the advantage that they can easily be modified
to detect abrupt shifts within monotonic trends. Replacing the median by Siegel’s (1982) repeated median, we can fit
a local linear trend to the data (Davies et al., 2004) and perform the tests on the residuals.
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