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Example

Example: Meier (1953) (reanalyzed in Jordan and Krishnamoorthy, 1996)
considered four experiments about the percentage of albumin in plasma
protein in human subjects

Percentage of albumin in plasma protein
Experiment ni Mean Variance

A 12 62.3 12.986

B 15 60.3 7.840

C 7 59.5 33.433

D 16 61.5 18.513
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Common Mean Problem

• Let us consider k independent normal populations where the ith
population follows a normal distribution with mean µ ∈ IR and variance
σ2
i > 0, i = 1, . . . , k.

• Let Ȳi denote the sample mean in the ith population, S2
i the sample

variance, and ni the sample size, i = 1, . . . , k.

• Then, we have

Ȳi ∼ N
(
µ ,

σ2
i

ni

)
and

(ni − 1) S2
i

σ2
i

∼ χ2
ni−1, i = 1, . . . , k,

and the statistics are all mutually independent.
Note that (Ȳi, S

2
i , i = 1, . . . , k) is minimal sufficient for (µ, σ2

1, . . . , σ
2
k)

even though it is not complete.
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Estimates of µ

• If the population variances σ2
1, . . . , σ

2
k are completely known, the

maximum likelihood estimator of µ is given by

µ̂ =

∑k
i=1

ni
σ2i
Ȳi∑k

j=1
nj
σ2j

.

• The above estimator is also the minimum variance unbiased estimator
under normality as well as the best linear unbiased estimator without
normality for estimating µ.

• The variance of µ̂ is given by Var (µ̂) =
1∑k
i=1

ni
σ2i

.
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Estimates of µ

• Graybill-Deal (1959) estimator of µ is given as

µ̂GD =

∑k
i=1

ni
S2
i
Ȳi∑k

j=1
nj
S2
j

.

Clearly, µ̂GD is an unbiased estimator of the common mean µ.

• For calculating the variance of µ̂GD, it holds

Var (µ̂GD) = E [Var (µ̂GD|S1, . . . , Sk)] + Var [E (µ̂GD|S1, . . . , Sk)]

= E

( k∑
i=1

ni σ
2
i

S4
i

)/(
k∑
i=1

ni
S2
i

)2
 .
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Estimates of µ

Meier (1953) derived a first order approximation of the variance of µ̂GD as

Var (µ̂GD) =
1∑k
i=1

ni
σ2i

[
1 + 2

k∑
i=1

1

ni − 1
ci (1− ci) +O

(
k∑
i=1

1

(ni − 1)2

)]

with

ci =
ni / σ

2
i∑k

j=1 nj / σ
2
j

, i = 1, . . . , k.
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Estimates of µ

• Is µ̂GD a uniformly better unbiased estimator of µ than is each Ȳi,
i = 1, . . . , k? Is Var(µ̂GD) ≤ σ2

i /ni, i = 1, . . . , k for all σ2
1, . . . , σ

2
k?

• Graybill and Deal (1959) showed for k = 2 that µ̂GD is a uniformly
better unbiased estimator of µ than is Ȳ1 or Ȳ2 if and only if n1 and n2

are each greater than 10.

• Norwood and Hinkelmann (1977): µ̂GD is a uniformly better estimator
of µ than each Ȳi if and only if each sample size ni, i = 1, . . . , k > 2,
is greater than 10 or ni = 10 for some i and nj greater than 18 for all
j 6= i.
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Variance Estimates

Sinha (1985) derived an unbiased estimator of the variance of µ̂GD that is
a convergent series. A first order approximation of this estimator is

V̂ar(1) (µ̂GD) =
1∑k
i=1

ni
S2
i

 1 +

k∑
i=1

4

ni + 1

 ni / S
2
i∑k

j=1 nj / S
2
j

−
n2
i / S

4
i(∑k

j=1 nj / S
2
j

)2


 .

This estimator is comparable to Meier’s (1953) approximate estimator:

V̂ar(2) (µ̂GD) =
1∑k
i=1

ni
S2
i

 1 +

k∑
i=1

4

ni − 1

 ni / S
2
i∑k

j=1 nj / S
2
j

−
n2
i / S

4
i(∑k

j=1 nj / S
2
j

)2


 .
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Variance Estimates

Two further estimators of the variance of µ̂GD which can be easily adapted
for later purposes.

• The ”classical” meta-analysis variance estimator

V̂ar(3) (µ̂GD) =
1∑k
i=1

ni
S2
i

.

• Hartung (1999): approximate variance estimator

V̂ar(4) (µ̂GD) =
1

k − 1

k∑
i=1

ni / S
2
i∑k

j=1 nj / S
2
j

(
Ȳi − µ̂GD

)2
.
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Homogeneity Testing

• Crucial assumption: Common mean in ALL the studies or populations

• Homogeneity hypothesis:

H0 : µ1 = · · · = µk

• Assuming equal error variances: ANOVA F -test

• Unequal error variances: modifications of F -test proposed by Brown and
Forsythe (1974), Mehrotra (1997), Asiribo and Gurland (1990).
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Homogeneity Testing

• Cochran (1937) suggested the test statistic

QC =

k∑
i=1

v̂i

(
Ȳi. −

k∑
j=1

hj Ȳj.

)2
,

where v̂i = ni/S
2
i , hi = v̂i/

∑k
i=1 v̂i.

• Reject H0 at level α if QC > χ2
k−1;α.

• Cochran’s test is often used as the standard test for testing homogeneity
of effect sizes in meta-analysis.

• In the common mean problem, Cochran’s test can be very liberal, see
Hartung, Argac, and Makambi (2002).
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Homogeneity Testing

• Welch (1951):

QW =
QC

(k − 1) + 2 k − 2
k + 1

k∑
i=1

1
ni − 1 (1− hi)2

.

• Under H0, QW
approx.∼ Fk−1,νg

νg =
(k2 − 1)/3∑k

i=1
1

ni − 1 (1− hi)2
.

• This test rejects H0 at level α if QW > Fk−1,νg;α.
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One-Way Random Effects Model

• 1.) What do we do when the true means may differ from study to study?

• 2.) In conducting several studies, we have restriction in randomization.
Is there any study-by-subject interaction present?

• Yes in 1.) or 2.) → one-way random effects model
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One-Way Random Effects Model

Fixed Effects Model

 

 

N((µµ,,  σσ1))
N((µµ,,  σσ2))
N((µµ,,  σσ3))
N((µµ,,  σσ4))
N((µµ,,  σσ5))

 µµ  

Random Effects Model

 

 

N((µµ1,,  σσ1))
N((µµ2,,  σσ2))
N((µµ3,,  σσ3))
N((µµ4,,  σσ4))
N((µµ5,,  σσ5))

 µµ  
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One-Way Random Effects Model

• Let Ȳi denote the sample mean in the ith population, S2
i the sample

variance, and ni the sample size, i = 1, . . . , k. Then, we have

Ȳi ∼ N
(
µ , τ2 +

σ2
i

ni

)
and

(ni − 1) S2
i

σ2
i

∼ χ2
ni−1, i = 1, . . . , k,

where τ2 ≥ 0 stands for the variability between the populations and is
also called the heterogeneity parameter.

• The expected value µ is generally called overall mean.

• Note that (Ȳi, S
2
i , i = 1, . . . , k) are minimally sufficient statistics in the

one-way random effects model.
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Estimates of µ

• If the variances τ2 and σ2
i , i = 1, . . . , k, are completely known, the

maximum likelihood estimator for µ is given as

µ̂ =

∑k
i=1(τ

2 + σ2
i /ni)

−1 Ȳi∑k
i=1(τ

2 + σ2
i /ni)

−1

• The above estimator is also the minimum variance unbiased estimator
under normality as well as the best linear unbiased estimator without
normality for estimating µ in one-way random effects model.

• The variance of µ̂ is given by

Var(µ̂) =
[ k∑
i=1

(τ2 + σ2
i /ni)

−1
]−1
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Estimates of µ

• In practice, the within-population variances σ2
i , i = 1, . . . , k, can be

unbiasedly estimated using the sample variances S2
i .

• The heterogeneity parameter τ2, however, has to be estimated using the
sufficient statistics (Ȳi, S

2
i ), i = 1, . . . , k.
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Estimates of τ2

• ANOVA-type estimator (see Rao, Kaplan, and Cochran, 1981):

τ̂2AN =
1

k − 1

k∑
i=1

(
Ȳi − Ȳ

)2 − 1

k

k∑
i=1

S2
i

ni

with Ȳ =
∑k
i=1 Ȳi/k.

• The estimator τ2AN may lead to a negative estimate of τ2, and hence it
is used by enforcing non-negativity in practice, i.e., max{0, τ̂2AN}.

• In meta-analysis, known as Hedges estimator.
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Estimates of τ2

• A widely used estimator for τ2: DerSimonian and Laird (1986) estimator

τ̂2DSL =
QC − (k − 1)∑k

i=1 v̂i −
∑k
i=1 v̂

2
i /
∑k
i=1 v̂i

where v̂i = ni/S
2
i and QC is Cochran’s homogeneity test statistic.

• The estimator τ̂2DSL may also yield a negative estimate for the
heterogeneity parameter, and hence the truncated version max{0, τ̂2DSL}
is usually used.
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Estimates of τ2

• Consider

E

[
k∑
i=1

ai
(
Ȳi − Ȳa

)2]
= k − 1.

with ai = 1/(τ2 + σ2
i /ni) and Ȳa =

∑k
i=1 ai Ȳi/

∑k
j=1.

• By substituting S2
1, . . . , S

2
k for σ2

1, . . . , σ
2
k, we get the Mandel-Paule

(1970) estimating equation

Q(τ2) =

k∑
i=1

w̃i
[
Ȳi − Ȳw̃

]2
= k − 1,

where Ȳw̃ =
∑k
i=1 w̃iȲi/

∑k
i=1 w̃i and w̃i = 1/(τ2 + S2

i /ni).
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Estimates of τ2

• The solution of

Q(τ2) =

k∑
i=1

w̃i
[
Ȳi − Ȳw̃

]2
= k − 1,

say τ̂2MP , is called the Mandel-Paule estimator for τ2.

• The solution is unique and exists provided that Q(0) > k − 1, see for
instance, Hartung and Knapp (2005). If Q(0) < k−1, the Mandel-Paule
estimator is set to zero.
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Estimates of τ2

• Sidik and Jonkman (2005) proposed an always non-negative heterogeneity
estimator

τ̂2 =
1

k − 1

k∑
i=1

(ri + 1)−1
(
Ȳi − Ŷr

)2
.

with ri = σ2
i /(ni τ

2) and Ŷr =
k∑
i=1

(ri + 1)−1 Ȳi/
k∑
j=1

(rj + 1)−1.

• Note ri depends on σ2
i and τ2. Compute a crude estimator of τ2, say

τ̂20 , and estimate the ratio ri by r̂i = S2
i /(ni τ̂

2
0 ).

• Sidik and Jonkman (2005): τ̂20 = 1
k

∑k
i=1

(
Ȳi − Ȳ

)2
, Ȳ =

∑
i Yi/k
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Estimates of τ2

• All the above estimators do not need normality assumption.

• Mandel-Paule estimator is close to (conditional) restricted maximum
likelihood (REML) estimator under normality, see Ruhkin, Biggerstaff,
and Vangel (2000).

• Which estimate of the heterogeneity parameter should we use?
Is it an important question?
Heterogeneity is only a nuisance parameter, isn’t it?
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Confidence Intervals on τ2

• Normality assumption is needed.

• Likelihood based methods can be applied: Wald-type or profile likelihood
confidence intervals.

• Wald-type confidence intervals cannot be recommended though statistical
packages usually provide this type of confidence intervals.

• Candidate: profile REML confidence interval

• Competitor: Q-profiling method proposed by Knapp, Biggerstaff,
Hartung (2006) and, independently, by Viechtbauer (2007)
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Confidence Intervals on τ2

• Confidence interval based on the (conditional) restricted log-likelihood;
conditional means: substitute the observed sample variance s21, . . . , s

2
k

for σ2
1, . . . , σ

2
k and then treated as known.

• It holds for the restricted log-likelihood for τ2

lR(τ2) ∝ −1

2

k∑
i=1

ln(τ2 + s2i/ni)−
1

2

k∑
i=1

1

τ2 + s2i/ni
− 1

2

k∑
i=1

(Ȳi − µ̂)2

τ2 + s2i/ni
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Confidence Intervals on τ2

• The estimating equation for τ2 is given by

τ̂2 =

∑k
i=1 w̃

2
i

[
(Ȳi − µ̂)2 − s2i/ni

]∑k
i=1 w̃

2
i

+
1∑k
i=1 w̃i

w̃i = 1/(τ2 + s2i/ni).
Let τ̂2REML denote the REML estimate.

• Then, a 100(1− α)% confidence interval for τ2 is given by

CIREML(τ2) :
{
τ̃2 | − 2

[
lR(τ̃2)− lR(τ̂2REML)

]
< χ2

1;α

}
=
{
τ̃2 | lR(τ̃2) > lR(τ̂2REML)− χ2

1;α / 2
}
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Confidence Intervals on τ2

• Q-profiling method: Recall from the estimating equation of the Mandel-
Paule estimator the statistic

Q(τ2) =

k∑
i=1

w̃i
[
Ȳi − Ȳw̃

]2
where Ȳw̃ =

∑k
i=1 w̃iȲi/

∑k
i=1 w̃i and w̃i = 1/(τ2 + S2

i /ni).

• Approximate 100(1− α)% confidence interval on τ2

CIQ(τ2) =
{
τ2 ≥ 0

∣∣ χ2
k−1;α/2 ≤ Q(τ2) ≤ χ2

k−1;1−α/2

}
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Confidence Intervals on τ2

• To determine the bounds of the confidence interval CIQ(τ2) one has to
solve the two equations for τ2, namely

lower bound: Q(τ2) = χ2
k−1;α/2

upper bound: Q(τ2) = χ2
k−1;1−α/2

• Simulation studies by Hartung and Knapp (2005), Knapp, Biggerstaff,
and Hartung (2006) as well as Viechtbauer (2007) show that the
interval CIQ(τ2) generally outperforms the other intervals with respect
to attaining the nominal confidence coefficient. The profile restricted
maximum likelihood interval CIREML(τ2) behaves well in attaining the
nominal confidence coefficient in several scenarios and seems to be the
only real competitor to the interval CIQ(τ2).
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Inference on the Overall Mean µ

• Standard approximate confidence interval for µ in meta-analysis:

CI1(µ) : µ̂RE = Ȳŵ =

∑k
i=1 ŵi Ȳi∑k
i=1 ŵi

±
( k∑
i=1

ŵi

)−1/2

z1−α/2

with ŵi = (τ̂2 + S2
i /ni)

−1.

• As is well known, in small to moderate number of samples, this confidence
interval suffers from the same weaknesses as its fixed effects counterpart.
Namely, the actual confidence coefficient is below the nominal one.
Consequently, the corresponding test on the overall mean yields too
many unjustified significant results.
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Inference on the Overall Mean µ

• Hartung and Knapp (2001a,b): approximate 100(1 − α)%-confidence
interval for µ

CI2(µ) : Ȳŵ =

∑k
i=1 ŵi Ȳi∑k
i=1 ŵi

±
√
Q̂∗ tk−1,1−α/2

with

Q̂∗ =
1

k − 1

∑k
i=1 ŵi (Ȳi − Ȳŵ)2∑k

i=1 ŵi
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Generic Meta-Analysis Models

• Fixed-effect model

• Random-effects model

Let us consider k independent studies, then we have for i = 1, 2, . . . , k

θi — true effect size in the ith study

θ̂i — estimated effect size in the ith study

σ2(θ̂i) — true variance of θ̂i, which may depend on θi

σ̂2(θ̂i) — estimate of σ2(θ̂i)
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Generic Meta-Analysis Models

In the ith study:

θ̂i ∼ N
(
θi, σ

2(θ̂i)
)
, σ̂2(θ̂i) given

Justification for normality assumption:

• Central limit theorem

• Asymptotic normality of maximum-likelihood estimator
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Fixed-Effect Model

Homogeneity assumption: θ1 = θ2 = · · · = θk =: θ

Fixed-effect model is given by

θ̂i ∼ N
(
θ, σ̂2(θ̂i)

)
, i = 1, 2, . . . , k.

(Conditional) ML estimate and (conditional) BLUE for θ is

θ̂FE =

∑k
i=1 vi θ̂i∑k
i=1 vi

, vi =
1

σ̂2(θ̂i)
, i = 1, 2, . . . , k,

with

Var
(
θ̂FE

)
=

1∑k
i=1 vi

.
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Fixed-Effect Model

Homogeneity test problem:

H0 : θ1 = θ2 = · · · = θk versus H1 : ∃(i, j) θi 6= θj, i 6= j.

Cochran’s Q:

Q =

k∑
i=1

vi

(
θ̂i − θ̂FE

)2
is approximately χ2-distributed with k − 1 degrees of freedom.

Reject H0 at (approximate) level α, if Q > χ2
k−1;1−α.

Generally, use results from common mean problem and
replace Ȳi by θ̂i and Si/ni by σ̂2(θ̂i).
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Random-Effects Model

Random-effects model:

θ̂i ∼ N
(
θ, τ2 + σ̂2(θ̂i)

)
, i = 1, 2, . . . , k,

and τ2 is the between-study variance, also called heterogeneity parameter.

(Conditional) ML estimator and (conditional)BLUE for θ for known τ2

θ̃RE =

∑k
i=1wi θ̂i∑k
i=1wi

, wi =
1

τ2 + σ̂2(θ̂i)
, i = 1, 2, . . . , k,

Generally, use results from one-way random effects model and
replace Ȳi by θ̂i and Si/ni by σ̂2(θ̂i).
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Random-Effects Model
Estimators of τ2 available in R package meta:

• DerSimonian-Laird

• Paule-Mandel (Mandel-Paule see above)

• Maximum-likelihood (use R package metafor)

• Restricted maximum-likelihood (use R package metafor)

• Hunter-Schmidt (use R package metafor)

• Sidik-Jonkman (use R package metafor)

• Hedges (use R package metafor)

• Empirical Bayes (use R package metafor)
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Random-Effects Model

By plugging in an estimate of τ2 in the above formula, we obtain

θ̂RE =

∑k
i=1 ŵi θ̂i∑k
i=1 ŵi

, ŵi =
1

τ̂2 + σ̂2(θ̂i)
, i = 1, 2, . . . , k,

with ’classical’ variance estimate

V̂ar
(
θ̂RE

)
=

1∑k
i=1 ŵi

.
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Random-Effects Model

Approximate (1− α)-confidence interval for θ

θ̂RE ±
√

V̂ar
(
θ̂RE

)
z1−α/2.

Hartung-Knapp-Sidik-Jonkman-interval (Hartung, Knapp (2001, Statist.
Med.), Sidik, Jonkman (2002, Statist. Med.):

θ̂RE ±
√

V̂arm
(
θ̂RE

)
tk−1;1−α/2.

with

V̂arm
(
θ̂RE

)
=

1∑k
i=1 ŵi

1

k − 1

k∑
i=1

ŵi

(
θ̂i − θ̂RE

)2
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Comments
We use the meta-analysis model

θ̂i ∼ N
(
θ, τ2 + σ̂2(θ̂i)

)
, i = 1, 2, . . . , k,

assuming τ2 = 0 (fixed effect) or τ2 > 0 (random effects)
and the following assumptions and interpretations (depending on the effect
size of interest):

• the analysis is conditionally on the observed σ̂2(θ̂i);

• the statistical uncertainty of σ̂2(θ̂i) is ignored;

• a possible correlation between θ̂i and σ̂2(θ̂i) is also ignored;

• estimator θ̂i do not have to be unbiased;

• unknown parameters are θ and τ2.

Basic Models 38



Example

Results of eight randomized controlled trials comparing the effectiveness of
amlodipine and a placebo on work capacity

Amlodipine 10 mg (E) Placebo (C)
Protocol nEi ȳEi s2Ei nCi ȳCi s2Ci

154 46 0.2316 0.2254 48 -0.0027 0.0007

156 30 0.2811 0.1441 26 0.0270 0.1139

157 75 0.1894 0.1981 72 0.0443 0.4972

162A 12 0.0930 0.1389 12 0.2277 0.0488

163 32 0.1622 0.0961 34 0.0056 0.0955

166 31 0.1837 0.1246 31 0.0943 0.1734

303A 27 0.6612 0.7060 27 -0.0057 0.9891

306 46 0.1366 0.1211 47 -0.0057 0.1291
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Example

Let µE be the expected value in the amlodipine group and µC in the control
group. We are interested in δ = µE − µC.
In each study, an estimator of δi is given by the difference of means, that is,

Di = X̄Ei − X̄Ci,

The variance of Di can be estimated by

V̂ar(Di) =
S2
Ei

nEi
+
S2
Ci

nCi

with S2
Ei und S2

Ci denoting the sample variances in the respective groups
and nEi and nCi the respective sample sizes.
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Meta-Analysis in R

Given values of Di and V̂ar(Di), we can easily use the function metagen in
the R Paket meta to perform a meta-analyis.

General call of the function:

metagen(TE, seTE, sm=""),

with TE the vector of effect sizes, seTE the vector of standard errors, and
sm="" a character string indicating underlying summary measure, e.g.,"MD"
for the difference of means.
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Example (Output slightly modified)
MD 95%-CI %W(fixed) %W(random)

1 0.2343 [ 0.0969; 0.3717] 21.22 17.47

2 0.2541 [ 0.0663; 0.4419] 11.35 12.74

3 0.1451 [-0.0464; 0.3366] 10.92 12.45

4 -0.1347 [-0.3798; 0.1104] 6.67 9.04

5 0.1566 [ 0.0072; 0.3060] 17.94 16.21

6 0.0894 [-0.1028; 0.2816] 10.85 12.40

7 0.6669 [ 0.1758; 1.1580] 1.66 2.90

8 0.1423 [-0.0015; 0.2861] 19.39 16.79

MD 95%-CI z p-value

Fixed effect model 0.1619 [0.0986; 0.2252] 5.0134 < 0.0001

Random effects model 0.1589 [0.0710; 0.2467] 3.5443 0.0004

Quantifying heterogeneity:

tau^2 = 0.0066; H = 1.33 [1; 2]; I^2 = 43.2% [0%; 74.9%]

Test of heterogeneity: Q d.f. p-value

12.33 7 0.0902
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Example (Output modified)

Hartung-Knapp-Sidik-Jonkman-Interval

metagen(TE, seTE,sm="", hakn=TRUE)

MD 95%-CI z|t p-value

Fixed effect model 0.1619 [0.0986; 0.2252] 5.0134 < 0.0001

Random effects model 0.1589 [0.0387; 0.2791] 3.1257 0.0167

*** Heterogeneity statistics erased ***

Details on meta-analytical method:

- Inverse variance method

- DerSimonian-Laird estimator for tau^2

- Hartung-Knapp adjustment for random effects model
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Forest Plot

Study

Fixed effect model
Random effects model
Heterogeneity: I−squared=43.2%, tau−squared=0.0066, p=0.0902

1
2
3
4
5
6
7
8

Total

299

 46
 30
 75
 12
 32
 31
 27
 46

Mean

0.2316
0.2811
0.1894
0.0930
0.1622
0.1837
0.6612
0.1366

SD

0.4747631
0.3796051
0.4450843
0.3726929
0.3100000
0.3529873
0.8402381
0.3479943

Experimental
Total

297

 48
 26
 72
 12
 34
 31
 27
 47

Mean

−0.0027
 0.0270
 0.0443
 0.2277
 0.0056
 0.0943

−0.0057
−0.0057

SD

0.02645751
0.33749074
0.70512410
0.22090722
0.30903074
0.41641326
0.99453507
0.35930488

Control

−1 −0.5 0 0.5 1

Mean difference
MD

 0.16
 0.16

 0.23
 0.25
 0.15

−0.13
 0.16
 0.09
 0.67
 0.14

95%−CI

[ 0.10; 0.23]
[ 0.07; 0.25]

[ 0.10; 0.37]
[ 0.07; 0.44]

[−0.05; 0.34]
[−0.38; 0.11]
[ 0.01; 0.31]

[−0.10; 0.28]
[ 0.18; 1.16]
[ 0.00; 0.29]

W(fixed)

100%
−−

21.2%
11.4%
10.9%
 6.7%

17.9%
10.8%
 1.7%

19.4%

W(random)

−−
100%

17.5%
12.7%
12.5%
 9.0%

16.2%
12.4%
 2.9%

16.8%

forest(meta-object)
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