Genetische Netzwerke
Sommersemester 2010

Lectures 6-8: 18/25-May-10
1-Jun-10

Marco Grzegorczyk
Systems biology

Learning signalling pathways and regulatory networks from postgenomic data
Static Bayesian networks

• Marriage between graph theory and probability theory.

• Directed acyclic graph (DAG) represents conditional independence relations.

• Markov assumption leads to a factorization of the joint probability distribution:

\[
P(A, B, C, D, E, F) = P(A) \cdot P(B \mid A) \cdot P(C \mid A) \cdot P(D \mid B, C) \cdot P(E \mid D) \cdot P(F \mid C, D)
\]
Bayesian networks versus causal networks

Bayesian networks represent conditional (in)dependency relations - *not* necessarily causal interactions.
Equivalence classes of BNs

- \(P(A) \cdot P(B \mid C) \cdot P(C \mid A) \)
- \(= P(A) \cdot P(B, C) \cdot P(C)^{-1} \cdot P(C, A) \cdot P(A)^{-1} \)
- \(= P(C \mid B) \cdot P(B) \cdot P(C)^{-1} \cdot P(A \mid C) \cdot P(C) \)
- \(= P(A \mid C) \cdot P(B) \cdot P(C \mid B) \)

- \(= P(A \mid C) \cdot P(B, C) \)
- \(= P(A \mid C) \cdot P(B \mid C) \cdot P(C) \)

v-structure

- \(P(A) \cdot P(B) \cdot P(C \mid A, B) \)

completed partially directed graphs (CPDAGs)

- \(P(A, B) \neq P(A) \cdot P(B) \)
- \(P(A, B \mid C) = P(A \mid C) \cdot P(B \mid C) \)

- \(P(A, B) = P(A) \cdot P(B) \)
- \(P(A, B \mid C) \neq P(A \mid C) \cdot P(B \mid C) \)
Bayesian networks

\[
P(\text{graph} \mid \text{data}) = \frac{P(\text{data} \mid \text{graph}) \cdot P(\text{graph})}{P(\text{data})} \propto P(\text{data} \mid \text{graph}) \cdot P(\text{graph})
\]

\[
= P(\text{graph}) \cdot \int P(\text{data}, q \mid \text{graph})dq
\]
Bayesian networks

\[
P(\text{graph} \mid \text{data}) = \frac{P(\text{data} \mid \text{graph}) \cdot P(\text{graph})}{P(\text{data})} \propto P(\text{data} \mid \text{graph}) \cdot P(\text{graph})
\]

\[
= P(\text{graph}) \cdot \int P(\text{data}, \theta(\text{graph}) \mid \text{graph}) \, d\theta(\text{graph})
\]

uniform distribution

\textbf{BGe metric:} \quad \text{closed form solution}

\[
= \text{score}_{BGe}(\text{graph} \mid \text{data})
\]

see lecture (4-May-10)
Bayesian networks

\[
P(\text{graph} \mid \text{data}) = \frac{P(\text{data} \mid \text{graph}) \cdot P(\text{graph})}{P(\text{data})} \propto P(\text{data} \mid \text{graph}) \cdot P(\text{graph})
\]

\[
= P(\text{graph}) \cdot \int P(\text{data}, \theta(\text{graph}) \mid \text{graph}) \, d\theta(\text{graph})
\]

uniform distribution

BDe metric: \rightarrow \text{closed form solution}

\[
= \text{score}_{BDe}(\text{graph} \mid \text{data})
\]

see lecture (11-May-10)
Learning the network structure

graph \rightarrow score(graph)

<table>
<thead>
<tr>
<th>n</th>
<th>4</th>
<th>6</th>
<th>8</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>#DAGs</td>
<td>543</td>
<td>$3.7 \cdot 10^6$</td>
<td>$7.8 \cdot 10^{11}$</td>
<td>$4.2 \cdot 10^{18}$</td>
</tr>
</tbody>
</table>

Idea: Heuristically searching for the graph M^* that is most supported by the data $P(M^* | data) > P(\text{graph} | data)$, e.g.: greedy search algorithm
Simple Greedy Search algorithm

- **Initialisation**: Start from an arbitrary graph G (e.g. the empty-seeded DAG without any edges) G and set: $G_1=G$.

- **Iteration**: Repeat for $i=1,2,3,...$

 Determine all $N=N(G_i)$ neighbour graphs $G_{i,1},...,G_{i,N}$ of G_i and compute their scores: $\text{Score}(G_{i,k})=P(D|G_{i,k}) \cdot P(G_{i,k})$.

 IF $\text{Score}(G_i) \geq \text{Score}(G_{i,k})$ for $k=1,...,N$, then stop the iteration and output G_i.

 ELSE set $G_{i+1}=G^*$ where G^* is the neighbour graph of G_i with the highest score. That is, it holds: $\text{Score}(G^*) \geq \text{Score}(G_{i,k})$ for all k and perform the next Iteration step.
Remarks

• It may make sense to perform the Greedy Search algorithm several times from different initialisations to avoid getting trapped in local optima.

• Both the BDe and the BGe scoring metrics can be used, and it is almost certain that they will lead to different results.

• It holds: \(\text{Score}(G) = \frac{P(G|D)}{P(D)} = \frac{1}{P(D)} \cdot P(D|G) \cdot P(G) \) where \(\frac{1}{P(D)} \) does not depend on \(G \) and can be ignored.

• Neighbour graphs of \(G \) means graphs that can be reached from \(G \) by single-edge operations. At least edge additions and edge deletions should be allowed. Edge reversals can be seen as optional (advantageous!) whereby it doesn’t matter whether one includes all edge reversals or edge reversals of compelled edges only.

• Neighbour graphs can have the same score, then one may randomly draw one of those neighbour graphs with the highest score.

• To include a possibility to cross ‘posterior landscape valleys’ with equal scores the following improved version of the greedy search algorithm can be implemented:
Greedy Search algorithm improved

- **Initialisation:** Start from an arbitrary graph G (e.g. the empty-seeded DAG without any edges) G and set: $G_1 = G$. Set Counter = 1.

- **Iteration:** Repeat for $i=1,2,3,...$

 Determine all $N=N(G_i)$ neighbour graphs $G_{i,1},...,G_{i,N}$ of G_i and compute their scores: $\text{Score}(G_{i,k}) = P(D|G_{i,k}) \cdot P(G_{i,k})$.

 IF $\text{Score}(G_i) > \text{Score}(G_{i,k})$ for $k=1,...,N$, **OR** **IF** Counter ≥ 10

 then stop the iteration and output G_i.

 ELSEIF $\text{Score}(G_i) = \text{Score}(G_{i,l})$ for one or more neighbour graphs

 Then set Counter = Counter + 1,

 and randomly draw one of these neighbour graphs G^* of G_i with $\text{Score}(G_i) = \text{Score}(G^*)$ and set: $G_{i+1} = G^*$.

 Then perform the next Iteration step

 ELSE Set Counter = 1 and $G_{i+1} = G^*$ where G^* is the neighbour graph of G_i with the highest score. That is, it holds: $\text{Score}(G^*) \geq \text{Score}(G_{i,k})$ for all k and perform the next Iteration step.
Greedy Search algorithm

• To include another possibility to escape from local optima the following optional step can be included:
Greedy Search algorithm 2

- **Initialisation**: Start from an arbitrary graph G (e.g. the empty-seeded DAG without any edges) G and set: $G_1 = G$.

- **Iteration**: Repeat for $i=1,2,3,...$

 Determine all $N=N(G_i)$ neighbour graphs $G_{i,1},...,G_{i,N}$ of G_i and compute their scores: $Score(G_{i,k}) = P(D|G_{i,k}) \cdot P(G_{i,k})$.

 IF $Score(G_{i}) \geq Score(G_{i,k})$ for all k

 REPEAT for $j=1,...,10$

 Set $G_{i,0} = G_i$

 REPEAT for $m=1,...,50$

 Randomly draw a neighbour graph G^* of $G_{j,m-1}$ and set $G_{j,m} = G^*$

 END

 END

 Determine the scores of $G_{1,50},...,G_{10,50}$ and select the graph $G_{j,50}$ with the highest score.

 IF $Score(G_{j,50}) > Score(G_i)$

 set $G_{i+1} = G_{j,50}$ and perform the next iteration step

 ELSE stop the iteration and output G_i

ELSE set $G_{i+1} = G_{i,u}$ where $G_{i,u}$ is the neighbour graph of G_i with the highest score. That is, it holds: $Score(G_{i,u}) \geq Score(G_{i,k})$ for $k=1,...,N$

and perform the next iteration step.
Greedy Search algorithm 2

Einfache verbale Beschreibung des Zusatzschrittes:

Learning the network structure

Distribution of $P(\text{graph}|\text{data})$

Data are sparse \rightarrow Intrinsic uncertainty of inference

Large data set D: Best network structure M^* well defined

Small data set D: Intrinsic uncertainty about M^*
Example: 2 genes → 16 different (dynamic) network structures

Best network: maximum score $P(D|M)$
Identify the best network structure

Ideal scenario: Large data sets, low noise
Uncertainty about the best network structure

Limited number of experimental replications, high noise
Sample of high-scoring networks

$P(\text{graph}|\text{data})$
Sample of high-scoring networks

Feature extraction, e.g. marginal posterior probabilities of the edges
Sample of high-scoring networks

Feature extraction, e.g. marginal posterior probabilities of the edges

High-confident edge

High-confident non-edge

Uncertainty about edges
Can we generalize this scheme to more than 2 genes?

In principle yes.

However ...
number of graphs

number of nodes

- **DAG-space**
- **EG-space**
Configuration space of networks/graphs

Posterior landscape

\[P(\text{graph}|\text{data}) \]
Markov Chain Monte Carlo (MCMC) sampling of Bayesian networks

Devise a Markov chain

\[P_{j+1}(G_i) = \sum_k T(G_i \mid G_k) \cdot P_j(G_k) \]

that converges in distribution to the posterior probability \(P(G \mid D) \)

\[P_j(G) \rightarrow P(G \mid D) \]

for \(j \rightarrow \infty \)
Markov Chain Monte Carlo (MCMC) sampling of Bayesian networks

The Markov transition matrix T is a matrix of transition probabilities, with $T(G_i|G_k)$ denoting the probability of a transition from graph G_k to graph G_i. The important feature of a Markov chain is that, under the fairly weak condition of ergodicity, the distribution $P_j(G_k)$ converges (for $j \to \infty$) to a stationary distribution $P_\infty(G_k)$.

The stationary distribution is independent of the initialisation of the Markov chain and uniquely determined by the Markov transition matrix T. It holds:

$$P_\infty(G_i) = \sum_k T(G_i|G_k) \cdot P_\infty(G_k)$$

The idea is to construct a Markov transition matrix T in such a way that the resulting Markov Chain has the posterior probability $P(G|D)$ as its stationary distribution, symbolically $P_\infty(G)=P(G|D)$.
Bayesian networks

\[P(G \mid D) = \frac{P(D \mid G) \cdot P(G)}{P(D)} \]

- \(P(G \mid D) \) is the posterior probability of \(G \) given the data \(D \)
- \(P(D \mid G) \) is the marginal likelihood of the graph \(G \)
- \(P(G) \) is the graph prior
- \(P(D) \) is the probability of the data:

\[P(D) = \sum_{G^*} P(D, G^*) = \sum_{G^*} P(D \mid G^*) \cdot P(G^*) \]

intractable for network domains with more than \(n=5 \) or \(n=6 \) variables, since this is a sum over all possible (valid/acyclic) graphs, and the number of valid graphs grows super-exponentially in the number of nodes
Bayesian networks

\[P(G | D) = \frac{P(D | G) \cdot P(G)}{P(D)} \]

- **P(G|D)** is the posterior probability of **G** given the data **D**
- **P(D|G)** is the marginal likelihood of the graph **G**
- **P(G)** is the graph-prior

P(D) is the probability of the data:

\[P(D) = \sum_{G^*} P(D, G^*) = \sum_{G^*} P(D | G^*) \cdot P(G^*) \]

- **P(D)** can be intractable but ratios **P(G|D)/P(G^*|D)** can be computed,
 since **P(D)** cancels out in these ratios !!!
A Markov chain is **ergodic** if it is **aperiodic** and **irreducible**. An irreducible Markov chain is one in which all states are reachable from all other states. A sufficient test for aperiodicity is that each state has a self-loop, meaning that the probability that the next state is the same as the current state is non-zero.

In general it is difficult to prove that a Markov Chain is ergodic. However, ergodicity can be assumed to hold in most real-world applications.
Detailed balance

The equation of detailed balance:

\[
\frac{T(G_k | G_i)}{T(G_i | G_k)} = \frac{P(G_k | D)}{P(G_i | D)}
\]

\[\iff T(G_k | G_i) \cdot P(G_i | D) = T(G_i | G_k) \cdot P(G_k | D)\]

is a **sufficient condition** for \(P(G | D)\) to be the stationary distribution \(P_\infty(G)\) of an ergodic Markov chain with Markov transition matrix \(T(.)|.|\).
Proof

We have to show that: \(P(G_i \mid D) = \sum_k T(G_i \mid G_k) \cdot P(G_k \mid D) \)

\[\iff P(G_i \mid D) = \sum_k T(G_k \mid G_i) \cdot P(G_i \mid D) \]

\[\iff P(G_i \mid D) = P(G_i \mid D) \cdot \sum_k T(G_k \mid G_i) = 1 \]
Construction of Markov chains

In practice setting up a Markov chain consists of two parts. First, given G_k, a new graph is proposed with a proposal probability $Q(G_i|G_k)$. In a second step, the new graph is then accepted with an acceptance probability $A(G_i|G_k)$, or rejected otherwise. A transition probability $T(G_i|G_k)$ is therefore given by the product of a proposal and an acceptance probability and can be written as:

$$T(G_i|G_k) = Q(G_i|G_k) \cdot A(G_i|G_k) \quad (i \neq j)$$

The proposal probabilities $Q(G_i|G_k)$ are defined by the way one designs the moves in the graph space, and the acceptance probabilities $A(G_i|G_k)$ depend on $Q(G_i|G_k)$.

The goal is that the equation of detailed balance holds for the transition probabilities $T(G_i|G_k)$.

33
How to specify $A(G_k \mid G_i)$?

$$\frac{T(G_k \mid G_i)}{T(G_i \mid G_k)} = \frac{P(G_k \mid D)}{P(G_i \mid D)} \iff \frac{Q(G_k \mid G_i) \cdot A(G_k \mid G_i)}{Q(G_i \mid G_k) \cdot A(G_i \mid G_k)} = \frac{P(G_k \mid D)}{P(G_i \mid D)}$$

$$\iff \frac{A(G_k \mid G_i)}{A(G_i \mid G_k)} = \frac{P(G_k \mid D) \cdot Q(G_i \mid G_k)}{P(G_i \mid D) \cdot Q(G_k \mid G_i)}$$

The equation of detailed balance is satisfied, if we set for $i \neq j$:

$$A(G_k \mid G_i) = \min \left\{ 1, \frac{P(G_k \mid D) \cdot Q(G_i \mid G_k)}{P(G_i \mid D) \cdot Q(G_k \mid G_i)} \right\}$$

$$\iff A(G_k \mid G_i) = \min \left\{ 1, \frac{P(D \mid G_k) \cdot P(G_k \mid G_i) \cdot Q(G_i \mid G_k)}{P(D \mid G_i) \cdot P(G_i) \cdot Q(G_k \mid G_i)} \right\}$$

'Hasings ratio'
Metropolis Hastings algorithm
structure MCMC for Bayesian networks

Initialisation: Start from an arbitrary initial graph G
(e.g. the empty-seeded graph) and set $G_0 = G$.

Iteration: For $i = 1, \ldots, T$

- Obtain a new graph G_i from the proposal distribution $Q(G_i | G_{i-1})$
- Accept the new graph with probability $A(G_i | G_{i-1})$ whereby
 $A(\cdot, \cdot)$ has to be specified as described above; otherwise reject
 G_{i-1} leave the Markov chain state unchanged; symbolically: $G_i = G_{i-1}$.

END

Discard an initial 'burn-in' period to allow the Markov chain to reach
stationarity, i.e. to converge. For example discard the first $I < T$ MCMC samples.

Output: An MCMC sample from the posterior distribution $P(G|D)$, symbolically:
MCMC sample: G_{I+1}, \ldots, G_T
Notes on Metropolis Hastings algorithm structure MCMC for Bayesian networks

The proposal moves are based on single edge operations and randomly drawn neighbour graphs.

That is, the proposal probability $Q(G_i|G_{i-1})$ is a discrete uniform distribution on all neighbour graphs of G_{i-1}.

It holds:
$Q(G|G_{i-1}) = 1/(|N(G_{i-1})|)$ for all neighbour graphs G of G_{i-1}, and
$Q(G|G_{i-1}) = 0$ for all non-neighbour graphs G of G_{i-1}.

$|N(G_{i-1})|$ is the cardinality of the neighbour graph set of G_{i-1}.
Single-edge-operations - structure MCMC moves

MCMC moves

- Delete edge
- Reverse edge
- Create edge
Markov chain Monte Carlo (MCMC)

Acceptance probability: \(\min \left\{ 1, \frac{P(D|M_{\text{new}})}{P(D|M_{\text{old}})} \times \frac{P(M_{\text{new}})}{P(M_{\text{old}})} \times \frac{Q(M_{\text{old}}|M_{\text{new}})}{Q(M_{\text{new}}|M_{\text{old}})} \right\} \)

MCMC algorithm converges to the posterior distribution \(P(\text{graph}|\text{data}) \)
Hastings ratio

\[Q(G_i|G_{i-1}) \neq Q(G_{i-1}|G_i) \]
is possible
MCMC sampling of Bayesian networks

The DAG sample $G_1, G_2, G_3, \ldots G_T$ is generated via Markov Chain Monte Carlo (MCMC) simulations. That is, via simulation of a Markov Chain $(M_t)_t$ in the space of DAGs whose distribution converges to the graph posterior distribution:

$$P(M_t = \text{graph} | \text{data}) \rightarrow P(\text{graph} | \text{data})$$

$t \rightarrow \infty$
MCMC sampling of Bayesian networks

The DAG sample $G_1, G_2, G_3, \ldots G_T$ is generated via Markov Chain Monte Carlo (MCMC) simulations. That is, via simulation of a Markov Chain $(M_t)_t$ in the space of DAGs whose distribution converges to the graph posterior distribution:

$$P(M_t=\text{graph}|\text{data}) \rightarrow P(\text{graph}|\text{data})$$

$$t \rightarrow \infty$$

In practice: t is not infinite!!!
Convergence diagnostics

In theory an ergodic Markov chain converges to the true posterior distribution $P(G|D)$. In practice, it is difficult to decide whether an MCMC simulation has sufficiently converged. Simple convergence diagnostics are trace plots of the logarithmic scores. Another – more reliable – convergence diagnostic bases on scatter plots of marginal edge posterior probabilities will be presented later. Passing these diagnostic tests is only a necessary rather than a sufficient condition for convergence, as it may not distinguish between meta-stable disequilibrium and true equilibrium (e.g. locally optimal regions of the posterior landscape).
Trace plot diagnostics

Bad convergence
→ different plateaus

Good convergence
→ same region is reached

MCMC sample trace plots of
\[\log\{\text{Scores}(G_i)\} = \log\{P(D|G_i) \cdot P(G_i)\} \]
for differently seeded (independent) structure MCMC runs
Utilise the DAG (CPDAG) sample G_{J+1}, \ldots, G_T for estimating the posterior probabilities of edge relation features:

$$
\hat{P}(A \rightarrow B) = \frac{1}{(T - J)} \sum_{i=J+1}^{T} I(G_i)
$$

where $I(G_i)$ is 1 if the CPDAG of G_i contains the directed edge $A \rightarrow B$, and 0 otherwise.
Convergence check via independent MCMC runs and scatter plots of edge relation feature posterior probabilities