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Abstract. If their assumptions are not met, classifiers may fail. In this
paper, the possibility of combining classifiers in multi-class problems is
investigated. Multi-class classification problems are split into two class
problems. For each of the latter problems an optimal classifier is deter-
mined. The results of applying the optimal classifiers on the two class
problems can be combined using the Pairwise Coupling algorithm by
Hastie and Tibshirani (1998).

In this paper exemplary situations are investigated where the respec-
tive assumptions of Naive Bayes or the classical Linear Discriminant
Analysis (LDA, Fisher, 1936) fail. It is investigated at which degree of
violations of the assumptions it may be advantageous to use single meth-
ods or a classifier combination by Pairwise Coupling.

1 Introduction

When talking about ensemble methods one usually has in mind very popular
principles like Bagging (Breiman, 1996) or Boosting (Freund and Shapire, 1997).
Both rely on combinations of different classification rules that are build on sam-
pled or weighted instances of the original data. In this paper a somewhat different
perspective to combining classifiers for multi-class problems is worked out: the
basic observation is that classifiers only work well if their underlying assumptions
hold, e.g. classwise independent features in the case of a Naive Bayes classifier.
This may be the case for some but not necessarily all of the classes.

Pairwise Coupling (PWC) generates K(K − 1)/2 subsamples of the data (K
being the number of classes) each consisting only of objects of one specific pair of
classes. For these two classes, an optimal classifier is determined, e.g. using cross-
validation. According to the thoughts presented above, the optimal classifier may
be a different one for different class pairs.

When classifying new data, of course in general no prior information is avail-
able to which pair of classes an object belongs. Thus, one can make use of the
Pairwise Coupling algorithm of Hastie and Tibshirani (1998) and apply the pre-
diction models for all class pairs and then construct posterior probabilities (and
thus a multi-class classification rule) from the results. The Pairwise Coupling
algorithm will be explained in Section 2.
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In this paper, the principle of combining pairwise optimal classifiers is investi-
gated for the case of two very common classification methods, namely Naive Bayes
and Linear Discriminant Analysis (Fisher, 1936). Both methods are briefly de-
scribed in Section 3. In a simulation study the degree of violation of the assumption
of both methods is varied. The results give quite an interesting indication of the ro-
bustness of both methods as well as they produce a ’map’ that shows when to use
whether one of the single classifiers or a combination. It turns out that in some
situations a combination of pairwise optimized classifiers can strongly improve the
classification results if the assumptions of single methods do not hold for all classes.

The following pseudo-code summarizes the steps of the suggested proceeding:

Build classification model (data, set of classification methods)

1. For each pair of two classes do
2. (a) Remove temporarily all observations that do not belong to one of both

classes from data: return newdata.
(b) For each classifier in set of classification methods

– Build classifier on newdata.
– Validate classifier e.g. using cross-validation.
– Store Results temporally in classifier results.

(c) Choose best classifier according to classifier results return classifier of
class-pair.

(d) Train classifier of class-pair on newdata:
(e) Return model of class-pair.

3. Return the whole model consisting of model of class-pair for all pairs of
classes.

Predict class (new object, models of class-pairs)

1. For each pair of subclasses do
2. (a) Calculate the posterior probabilities for new object assuming the object

being of one of the currently considered two classes according to model
of class-pair.

(b) Return the class pair posterior probabilities.
3. Use the Pairwise Coupling algorithm to calculate the posterior probabilities

for all K classes from the set of all estimated pairs of conditional class pair
posterior probabilities.

4. Return the predicted class k with maximal class posterior probability.

The following section describes a solution to the problem of gaining the vec-
tor of posterior probabilities form the pairwise classification models built with
possibly different classifiers.

2 Pairwise Coupling

2.1 Definitions

We now tackle the problem of finding posterior probabilities of a K-(sub)class
classification problem given the posterior probabilities for all K(K − 1)/2
pairwise comparisons. Let us start with some definitions.
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Let p(x) = p = (p1, . . . , pK) be the vector of (unknown) posterior probabilities.
p depends on the specific realization x. For simplicity in notation we will omit x.
Assume the ”true” conditional probabilities of a pairwise classification problem
to be given by

μij = Pr(i|i ∪ j) =
pi

pi + pj
. (1)

Let rij denote the estimated posterior probabilities of the two-class problems.
The aim is now to find the vector of probabilities pi for a given set of values rij .

Example 2: Let p = (0.7, 0.2, 0.1). The μij can be calculated according to
equation 1 and can be presented in a matrix:

(μij)i,j =

⎛
⎝

. 7/9 7/8
2/9 . 2/3
1/8 1/3 .

⎞
⎠ . (2)

Example 3: The inverse problem does not necessarily have a proper solution,
since there are only K −1 free parameters but K(K −1)/2 constraints. Consider

(rij)i,j =

⎛
⎝

. 0.9 0.4
0.1 . 0.7
0.6 0.3 .

⎞
⎠ (3)

where the row i contains the estimated conditional pairwise posterior probabili-
ties rij for class i. It can be easily checked that the linear system resulting from
applying equation 1 cannot be solved.

From Machine Learning, majority voting (”Which class wins most compar-
isons ?”) is a well known approach to solve such problems. But here, it will not
lead to a result since any class wins exactly one comparison. Intuitively, class 1
may be preferable since it dominates the comparisons the most clearly.

2.2 Algorithm

In this section we present the Pairwise Coupling algorithm of Hastie and Tib-
shirani (1998) to find p for a given set of rij . They transform the problem into
an iterative optimization problem by introducing a criterion to measure the fit
between the observed rij and the μ̂ij , calculated from a possible solution p̂. To
measure the fit they define the weighted Kullback-Leibler distance:

l(p̂) =
∑
i<j

nij

(
rij ln

(
rij

μ̂ij

)
+ (1 − rij) ln

(
1 − rij

1 − μ̂ij

))
. (4)

nij is the number of objects that fall into one of the classes i or j.
The best solution p̂ of posterior probabilities is found as in Iterative Propor-

tional Scaling (IPS) (for details on the IPS-method see e.g. Bishop, Fienberg
and Holland, 1975). The algorithm consists of the following three steps:
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1. Start with any p̂ and calculate all μ̂ij .
2. Repeat until convergence i = (1, 2, . . . , K, 1, . . .):

p̂i ← p̂i

∑
j �=i nijrij∑
j �=i nij μ̂ij

, (5)

renormalize p̂ and calculate the new μ̂ij .
3. Finally scale the solution to p̂ ← p̂∑

i p̂i
.

Motivation of the algorithm: Hastie and Tibshirani (1998) show that l(p)
increases at each step. For this reason, since it is bounded above by 0, l(p)
converges. providing μ̂ij = rij ∀ i �= j, it will be found.

Even if the choice of l(p) as optimization criterion is rather heuristic, it can
be motivated in the following way: consider a random variable nijrij , being the
number of observations of class i among the nij observations of class i and j.
This random variable can be considered to be binomially distributed nijrij ∼
B(nij , μij) with ”true” (unknown) parameter μij . Since the same (training) data
is used for all pairwise estimates rij , the rij are not independent, but if they were,
l(p) of equation 4 would be equivalent to the log-likelihood of this model (see
Bradley and Terry, 1952). Then, maximizing l(p) would correspond to maximum-
likelihood estimation for μij .

Going back to example 3, we obtain p̂ = (0.47, 0.25, 0.28), a result being
consistent with the intuition that class 1 may be slightly preferable.

In Wu et al. (2004) several methods for multi-class probability estimation by
Pairwise Coupling algorithms are presented and compared. For the simulations
of this paper, the method of Hastie and Tibshirani (1998) is used.

3 Implemented Methods

3.1 Linear Discriminant Analysis

In its classical form Linear Discriminant Analysis was constructed by R. Fisher
in 1936 for linear reduction of dimensionality to maximize the distance of class
means w.r.t. the covariance structure of the data.

The method is shown to be optimal in the sense that it minimizes the Bayes
Risk if the underlying class distributions follow normal law but have equal co-
variance matrices for all classes (see e.g. Hastie and Tibshirani, 2001, p.95).

The classification for an object x is obtained by maximizing the decision rule
d̂k(x) over all classes k:

d̂k(x) = x̄kΣ̂−1x − 1
2
x̄kΣ̂−1x̄k + ln(π(k)) (6)

with π(k) being the class prior membership probabilities, x̄k denoting the mean
of class k and Σ̂ being the pooled covariance matrix

Σ̂ =
1

N − K

K∑
k=1

N∑
n=1

I[k](kn)(xn − x̄k)(xn − x̄k)′. (7)
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Here I[k](kn) represents the indicator function that becomes 1 if object n of the
training data is of class k and 0 if not. The term pooled covariance follows from
the fact that equation 7 can be reformulated in terms of the classwise covariance
estimations Σ̂k:

Σ̂ =
1

N − K

K∑
k=1

nkΣ̂k (8)

where nk denotes the size of class k in the training data.
The classification rule linearly partitions the feature space. This is shown in

Figure 1 for the first two dimensions of the well known iris data from Fisher
(1936).

Hastie and Tibshirani (2001, p.89) mention that Linear Discriminant Analysis
often shows good results and is among top 3 classifiers for 7 of 22 real world data
data sets of the Statlog project (Michie et al., 1994).

Fig. 1. Two-dimensional projections of the partition of the feature space using Linear
Discriminant Analysis on Iris data

3.2 Naive Bayes

When using the Naive Bayes method features are assumed to be conditionally
independent given the class. For each class k and variable d mean μ̂d,k and
covariance σ̂d,k are estimated.

For a new observation x the likelihood Pd(x|k) of its realization in variable d
given class k can be calculated then assuming normal distribution.

Finally, the predicted class is obtained my maximizing the decision rule

d̂k(x) = π(k)
∏
d

Pd(x|k). (9)

with π(k) again denoting the prior probability of class k. Doing so implicitly
assumes no correlations between the different variables d given the class: the
covariance matrix of class k Σk is assumed to be 0 for all elements except for
the main diagonal elements.
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Fig. 2. Two-dimensional projections of the partition of the feature space using Naive
Bayes on Iris data.

This dramatically decreases the number of free model parameters, especially if
the number of features is large. Another advantage of the Naive Bayes method may
be that equal variances are not assumed as it is done in LDA. Nevertheless, it may
be disadvantageous if there are strong correlations among the predictor variables.

4 Simulation Study

4.1 An Introductory Example

To gain some insight into the merit of the method a synthetic example was con-
structed. This example consisted of four equally large classes in two-dimensional
space, all normally distributed (see Fig. 3, the different classes are labelled with
numbers from 1 to 4).

Fig. 3. First example of simulated data
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Classes 1 and 2 have an equal covariance structure and can therefore be opti-
mally separated by an LDA classifier, but not by the Naive Bayes method since
the input variables are not independent given the class.

Likewise, as classes 3 and 4 have uncorrelated features given the class, they
can therefore be optimally identified by the Naive Bayes method, but LDA will
produce a higher error because the underlying normal distributions do not have
an equal covariance matrix.

Table 1. Test error rates on synthetic example of Fig. 3 (400 samples per class, 2/3
training data and 1/3 test data)

Method Test Error

LDA 0.07
Naive Bayes 0.14

PWC 0.01

It is now conjectured that by training a PWC classifier on the dataset, a
LDA-classifier is chosen to separate the first pair of classes and a Naive Bayes
classifier for the latter pair. This expected behaviour can be observed on the
simulated data. The results show a strong increase in classification performance
on separately simulated test data when combing both classifiers as opposed to
use only the base methods (see table 3).

4.2 Experimental Setting

In oder to investigate when it is beneficial to use one of the base methods or
their classification using Pairwise Coupling (and choosing the pairwise optimal
classifier based on cross-validated error rates) a study is performed with simu-
lated data as in Section 4.1 but with varying degree of violated assumptions for
both methods:

Four normally distributed classes are generated with class expectations:

μ1 = (50, 50)′

μ2 = (65, 50)′

μ3 = (0, 20)′

μ4 = (0, 0)′.

The class covariance matrices are constructed as a convex combination of four
extreme cases:

Σ∗
1 (ρ) = Σ∗

2 (ρ) =
(

σ2
1 ρ σ1 σ2

ρ σ1 σ2 σ2
2

)

and

Σ∗
3 (ρ) = Σ∗

3 =
(

σ2
3 0
0 σ2

4

)
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Σ∗
4 (ρ) = Σ∗

4 =
(

σ2
4 0
0 σ2

3

)

with σ1 = 5, σ2 = 10, σ3 = 1 and σ4 = 10.
The covariance matrices of class 1 and 2 exactly hold the assumptions that un-

derly Linear Discriminant Analysis, since covariances are greater 0 but the same
for both classes. The covariance matrices of class 3 and 4 represent the ’Naive
Bayes - case’ since the variables are independent but have different variances for
both classes.

The covariance Σi of class i is set to be

Σi(α, ρ) = αΣ∗
1 (ρ) + (1 − α)Σ∗

i (ρ) (10)

The parameter α ∈ [0, 1] determines how equal the class covariance matrices look
like, the larger α is the more equal they are. For α = 1 all classes’ covariances
equal to Σ∗

1 (ρ). Then, the assumptions of LDA holds.
The free parameter ρ ∈ [0, 1] determines the correlation in Σ∗

1 (ρ). ρ = 0 means
independent variables for all classes as it is assumed for the Naive Bayes method.
Four exemplary situations are shown in Figure 4: The upper left figure shows

Fig. 4. Simulated data for 4 different parameter combinations
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simulated data for α = 0.1, ρ = 0.1: all classes possess quite specific covariance
matrices with very small correlations among the variables. This should be a case
where the Naive Bayes method can be assumed to produces good results. The
upper right figure illustrates simulated data for α = 0.5, ρ = 0: for all classes the
variables are completely uncorrelated but the class-specific covariance structure
is not as present as in the example before. The bottom left figure illustrates the
data situation for α = 0, ρ = 0.5: The covariance matrices of the classes are
unique and the variables of class 3 and 4 are correlated. Both parameters are
set to α = ρ = 0.9 in the bottom right figure: The covariance shapes of the
classes look very similar and contain strong correlations. In this situation, the
assumptions of Linear Discriminant Analysis are quite well met.

For our simulation study both parameters α and ρ are varied in the interval
[0, 1]. For each simulation 400 observations are generated for each class. The data
are split into 2/3 training data. The last third is used for testing. The locally
optimal classifiers are chosen by 3-fold cross-validation.

Fig. 5. Results of the simulation study for the different methods (scaled between 0
error (black) and the worst result (white)
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4.3 Results

The results of the simulation study are shown in Figure 5. The first three plots
show the results of the two base methods as well as their combination using
PWC for our simulated data.

For each pair of simulation parameters (α, ρ) the results are scaled: black
indicates a test error rate of 0 while white denotes the worst obtained result.

It can be easily recognized that LDA performs best for both high parameters
of ρ and α, i.e. equal covariance matrices of all classes and strong correlations
between the variables. Using Naive Bayes is advantageous for a low parameter
α, i.e. strongly differing covariance matrices of the classes, especially if there
are furthermore low correlations in the variables. Combining both classifiers
is a good compromise in most situations except if there are equal covariance
matrices with small correlations of all classes. A strong benefit can be obtained
if the covariance matrices of the classes are not equal and there are also strongly
correlated variables, i.e. if the assumptions of both base methods do not hold.
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Fig. 6. Best method in dependence of the parameter if its test error is siginifanctly
better than the error of the best competitor. * indicates that none of the methods
significantly outperforms the other methods. Method 1: LDA; 2: Naive Bayes and 3:
PWC. Left: simple significances, right: using Bonferroni-Holm correction for multiple
testing.

To determine whether one method significantly outperforms the other two,
the above mentioned simulation was conducted 30 times and for each pair of
parameters a paired t-test between the test error rates winning and the second
best method was applied (Dietterich, 1995). Figure 6 shows the results. In the left
figure tests were performed with a simple significance level of 0.05, while in the
right figure - in order to cope with the problem of multiple testing - results are
given after adapting the significance levels by the Bonferroni-Holm method. One
can observe that there are situations (strongly differering covariances between
the classes combined with correlations that appear in the data) where the PWC
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approach leads to significant improvements of the misclassification rate. The
base methods show a possible advantage in the areas where their underlying
assumptions are met (low ρ for Naive Bayes and and high α for LDA implying
equal covariance matrices in the classes). But these advantages proved not to
be significant after adapted significance levels and might be caused by falsely
rejecting the null hypothesis of equal mean error rates due to multiple testing.

5 Application to Real World Data

For not to restrict our analysis on the simulated data we also applied the methods
to several real world multi-class data from the UCI Machine Learning Repository.
An overview over some characteristics of the chosen data sets is given in Table 2.
For an explicit description of the data sets see Michie et al. (1994) and Merz and
Murphy (1998).

Table 2. Statistics of data sets

Satellite Vehicle Nursery Vowel

classes 6 4 5 11
features 36 18 8 10
examples 6435 846 12960 990

In each experiment the data were randomly split into a training and test set
(2/3 and 1/3), except for the Satellite set, where the same 4435 examples as
in Statlog (Michie et al., 1994)were used for training and the remaining 2000
examples for testing.

The results are given in Table 3 in terms of test error rates for both base
methods as well as their combination. For the Satellite data, the error rates of
the Naive Bayes method can be improved by a combined classifier but LDA
performs overall best. For the Vehicle data set, Naive Bayes shows very bad
results. The rates of LDA can even be slightly improved using a PWC classifier
combination. For the Nursery data LDA shows very bad results. The error rates
of Naive Bayes here can be improved by Pairwise Coupling. Finally, for the Vowel
data set the recognition rates of both methods can be dramatically improved
using a classifier combination. As a conclusion, the proposed local combination

Table 3. Test error rates MLBench

Method Satellite Vehicle Nursery Vowel

LDA 0.15 0.26 0.47 0.42
Naive Bayes 0.20 0.57 0.10 0.52

PWC 0.18 0.23 0.08 0.17
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of classifiers sometimes yielded a large improvement of the results but never
showed very bad performance compared to the winning base method method.
This result is in harmony with the observations made in Section 4.

6 Summary

Classifier combination for multi-class classification problems is proposed in dif-
ferent way compared to the very common Bagging and Boosting approaches: for
each pair of classes an optimal classifier is determined using cross-validation and
class pairwise models are trained.

A new object is labelled by applying all classifiers for each class pair and then
combining the results by Pairwise Coupling (Hastie and Tibshirani, 1998).

Such a proceeding may be advantageous in situations where the assumptions
of the different base methods hold for different classes.

The benefit of such a classifier combination is investigated for two very com-
mon methods, namely Linear Discriminant Analysis and Naive Bayes. A simula-
tion study is performed where the degree of violation of the specific assumptions
for both methods is varied and finally a map is obtained that indicates when it
is better to implement a single one of these methods or their combination.

Furthermore, the methods are applied to common real world problems from
the UCI Machine Learning Repository. Recapitulating the results, it turned out
that sometimes large improvements of the misclassification rate are achieved
by using PWC while its results were never much worse than the winning base
method.

It should also be mentioned that Moreira and Mayoraz (1998) proposed a
different approach to build classifiers from class pairwise rules by calculating
conditional probabilities for the membership of a new object to a class pair. A
comparison to this approach was not the main interest of this study but may be
a topic of further investigation as well as the investigation of the principle for
other classifiers.

Finally – referring to the work of Dietterich and Bakiri (1995) – multiclass-
classification problems can also be solved by transforming them into several bi-
nary classification problems using the method of Error-Correcting Output Codes.
There basically, in every binary classification problem the K classes are grouped
into two sets of classes which are then separated. The result is a sequence of
binary classifiers. Each of the classes is coded by a vector of the binary group-
labels. Prediction of an object is done by applying all classifiers and choosing
the class with the most similar code vector.

PWC can be embedded in this context according to Allwein et al. (2000) and
thus an extension of the suggested approach towards Error-Correcting Output
Codes may also be topic of further investigation.
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