
A RapidMiner extension for Open
Machine Learning

Jan N. van Rijn1, Venkatesh Umaashankar2, Simon Fischer2,
Bernd Bischl3, Luis Torgo4, Bo Gao5, Patrick Winter6, Bernd
Wiswedel6, Michael R. Berthold7 and Joaquin Vanschoren1

1Leiden University, {jvrijn,joaquin}@liacs.nl
2Rapid-I GmbH, {venkatesh,fischer}@rapid-i.com

3TU Dortmund, Dortmund, Germany,
bischl@statistik.tu-dortmund.de

4University of Porto, Porto, Portugal, ltorgo@inescporto.pt
5KU Leuven, Leuven, Belgium, bo.gao@cs.kuleuven.be

6KNIME.com AG,
{patrick.winter,Bernd.Wiswedel}@knime.com

7University of Konstanz, Konstanz, Germany,
Michael.Berthold@uni-konstanz.de

Abstract

We present a RapidMiner extension for OpenML, an open science
platform for sharing machine learning datasets, algorithms and exper-
iments. In order to share machine learning experiments as easily as
possible, it is being integrated into various popular data mining and ma-
chine learning tools, including RapidMiner. Through this plugin, data
can be downloaded, and workflows and results uploaded to the OpenML
website, where they can be searched, aggregated and reused.

1 Introduction

In this paper we present a RapidMiner extension for OpenML1, an open science
platform for machine learning. It allows researchers to submit datasets, algo-
rithms, workflows, experiments and their results to a single platform. OpenML

1http://openml.org/, beta



Figure 1: Components of OpenML.

automatically organizes all content in a database, where it is freely available
to everyone and searchable through its website. Above all, OpenML aims to
facilitate an open scientific culture, which in turn can tremendously speed up
progress [5]. First, by publishing detailed results, other scientists can clearly
interpret, and even verify and reproduce certain findings, so that they can
confidently build upon prior work [4]. Furthermore, by integrating results
from many studies, researchers can conduct much larger studies. Algorithms
and workflows can immediately be compared over many different datasets and
a wide range of varying parameter settings. Finally, many machine learning
questions won’t require the set up of new experiments. These can be answered
on the fly by searching and combining results from earlier studies.

The key components of OpenML are shown in Figure 1. Central are the
OpenML API and database, which contains all details and meta-data about all
shared datasets, implementations and experiments. New content can be sent
to OpenML by means of a RESTful API. This API is also being integrated
into a number of popular data mining and machine learning tools, i.e., Weka,
R, KNIME and RapidMiner, so that content can be shared automatically.
OpenML also provides various search interfaces, so that these entities can
later be retrieved, e.g., through a web interface, textual search engine or SQL
interface. The latter enables users to directly query the database by means of
SQL statements.

In Section 2 an overview of related work is provided. In Section 3, we dis-
cuss how experiments are defined in OpenML. Section 4 provides an overview
of the most important concepts in the database. In Section 5 we describe



the web API, allowing integration into various tools. Section 6 describes how
we support the sharing of experiments, and how it is being integrated into
RapidMiner. Section 7 details the search interfaces of OpenML, and Section 8
concludes.

2 Related Work

OpenML builds upon previous work on experiment databases [7], which in-
troduced the idea of sharing machine learning experiments in databases for
in-depth analysis of learning algorithms. The most notable enhancement of
OpenML is the introduction of a web API to allow integration with various
machine learning tools, and a more clear definition of experiments through
tasks (see Section 3).

Kaggle2 is a platform which hosts machine learning challenges. In some
sense, these challenges are similar to OpenML tasks: users are provided with
data and instructions, and challenged to build a predictive model on this. How-
ever, as Kaggle is a competition platform, it does not support collaboration:
people are not allowed to see each other’s algorithms or results. OpenML,
however, is an open science platform, allowing researchers complete insight
into each other’s work.

There also exist several platforms for sharing algorithms, workflows and
datasets, such as myExperiment [1, 3] and MLData.3 However, these platforms
were not designed to collect and organise large amounts of experimental results
over many algorithms and datasets, nor allow such detailed analysis of learning
algorithms and workflows afterwards. On the other hand, we do aim to fully
integrate these platforms with OpenML, so that datasets and algorithms can
be easily transferred between them.

Finally, MLComp4 is a service that offers to run your algorithms on a
range of datasets (or vice versa) on their servers. This has the great benefit
that runtimes can be compared more easily. This is not strictly possible in
OpenML, because experiments are typically run on the user’s machines. How-
ever, OpenML does allow you to rerun the exact same experiments on different
hardware, which is necessary anyway since hardware will change over time.
Moreover, researchers do not need to adapt the way they do their research:
they can run their algorithms in their own environments. OpenML also allows
users to define different types of experiments beyond the traditional bench-
marking runs, and allows more flexible search and query capabilities beyond
direct algorithm comparisons.

2http://www.kaggle.com/
3http://www.mldata.org/
4http://www.mlcomp.org/



3 Tasks

In order to make experiments from different researchers comparable, OpenML
fully defines experiments in tasks. A task is a well-defined problem to be
solved by a machine learning algorithm or workflow. For each task, the inputs
are provided and the expected output is defined. An attempt to solve a task
is called a run. Currently, tasks of the type Supervised Classification and
Supervised Regression are supported, but OpenML is designed in such a way
that it can be extended with other task types. A typical task would be: Predict
target variable X on dataset Y with a maximized score for evaluation metric Z.
Usually, when a user wants to submit new results to the server, he searches for
appropriate tasks, and runs his algorithm on these. The results from these runs
will be uploaded to the server, along with information about the algorithm,
its version and the parameter settings. This process is explained in detail in
Section 5.

1 <oml : task xmlns:oml=" h t t p : //open−ml . org/openml">
2 <oml:task_id>2</oml:task_id>
3 <oml:task_type>Supervised Classification</oml:task_type>
4 <oml: input name="source_data">
5 <oml:data_set>
6 <oml:data_set_id>61</oml:data_set_id>
7 <oml : ta rge t_fea ture>class</ oml : ta rge t_feature>
8 </oml:data_set>
9 </oml : input>

10 <oml: input name="estimation_procedure">
11 <oml:est imat ion_procedure>
12 <oml:type>cross_validation</oml:type>
13 <oml :data_sp l i t s_ur l>
14 http: // www . openml . org / data / splits / iris_splits . arff
15 </ oml :data_sp l i t s_ur l>
16 <oml:parameter name="number_folds">10</oml:parameter>
17 <oml:parameter name="number_repeats">10</oml:parameter>
18 <oml:parameter name=" s t ra t i f i ed_sampl ing ">true</oml:parameter>
19 </oml:est imat ion_procedure>
20 </oml : input>
21 <oml: input name="evaluation_measures">
22 <oml:evaluat ion_measures>
23 <oml:evaluation_measure>predictive_accuracy</oml:evaluation_measure>
24 </oml:evaluat ion_measures>
25 </oml : input>
26 <oml:output name=" pred i c t i ons ">
27 <oml : p r ed i c t i on s>
28 <oml: format>ARFF</oml: format>
29 <oml : f e a tu r e name="confidence . classname" type="numeric" />
30 <oml : f e a tu r e name=" f o l d " type=" in teger " />
31 <oml : f e a tu r e name=" pred ic t ion " type=" s t r ing " />
32 <oml : f e a tu r e name=" repeat " type=" in teger " />
33 <oml : f e a tu r e name="row_id" type=" in teger " />
34 </ oml : p r ed i c t i on s>
35 </oml:output>
36 </ oml : task>

Figure 2: XML representation of a task.



Figure 2 shows an example of a Supervised Classification task definition. It
provides all information necessary for executing it, such as a URL to download
the input dataset and an estimation procedure. The estimation procedure
describes how the algorithms that are run on this task are being evaluated,
e.g., using cross validation, a holdout set or leave-one-out. For every run
performed on a certain task, this is done using the same data splits. An ARFF
file containing these splits is provided. Also, a set of evaluation measures
to optimise on is provided. An ARFF file containing the predictions (and
confidences per class) is expected as the result.

4 Database

One of the key aspects of OpenML is the central database, containing details
about all experiments. A partial schema of the database is provided in Fig-
ure 3. In the database schema, the concept of inheritance is used: some tables
shown do not exist, but describe what fields should be contained by tables in-
heriting from them, i.e., data and setup. We call these tables interface tables.
Also, all tables inheriting from the same interface table share a primary key.

OpenML considers algorithms as conceptual entities, an algorithm itself
can not be used to execute a task. Instead, an algorithm can be implemented,
resulting in an implementation. In this way we also support versioning. For ex-
ample, when an implementation containing a bug is used, this will potentially
yield suboptimal results. This changes whenever a new version is released.
Thus, we use the table implementation, where the primary key is fullName,
an aggregation of its name (field: implementation) and its version (field:
version). More specifically, an implementation can typically be run with dif-
ferent parameter settings. The setup table contains, for each implementation,
which parameter values where used in a specific run. The table input con-
tains for each implementation all parameters and their default values. The
table input_setting contains for every setup the values of the parameters.

The tables dataset and evaluation both contain data, which can serve
as input or output of a run. These are linked together by the linking tables
input_data and output_data. Entries in the dataset table can be either
user-submitted datasets or files containing the result of a run, such as pre-
dictions. For each evaluation measure performed, an entry is stored in the
evaluation table. Querying all experiments of a specific type of task is eas-
iest if the inputs and outputs of that task types are combined in a single
table. For this reason, the views SVCRun and SVRRun have been introduced for
Supervised Classification tasks and Supervised Regression tasks, respectively.
These are materialized views containing all inputs, outputs and results of such
an experiment.

For each implementation and dataset, a number of meta-features [6] are



quality

data

Data_Quality

value

input

setup

Input_Setting

value

formula

name

Quality

description ,...

study

setup

rid

Run

parent

name

did

Dataset

url,...

data

run

Input_Data

name

data

run

Output_Data

name

function

did

Evaluation

label

value

stdev

source

did

Data

EvaluationMeasure

label

quality

implementation

Algorithm_Quality

value

label

task_id

Study
implementation

sid

Setup

isDefault

Run

implementation

fullName

Output

name

dataT ype

version

fullName

Implementation

name

implements

url, library

type

generalName

implementation

fullName

Input

name

defaultValue

dataType

valueRange,...

implement Implementation

role

parent

Component

child

description,...

name

Algorithm

name

Kernel

description ,...

name

EvaluationMeasure

description ,...

name

DistFunction

description ,...

name

Function

description ,...

description

eid

Study

expdesign

conclusions

role

parent

ImplementationComponent

child

ttid

task_id

Task

name

ttid

Task_type

description

creator ,...

input

task_id

Task_values

value

name

ttid

Input

description

format

name

ttid

Output

description

format

setup_id

task_id

rid

SVRRun

input_data

Setup

Dataset

Task

Run

Inheritance

Many-to-one

One-to-onesetup_id

task_id

rid

SVCRun

input_data

Figure 3: Database schema.

obtained and stored in the data_quality and algorithm_quality table, re-
spectively. These meta-features are called qualities. A list of all qualities can
be found in their corresponding tables.

5 RESTful API
In order to enable the sharing of experiments, a web API5 has been devel-
oped. The API contains functions that facilitate downloading datasets, tasks
and implementations. Furthermore, it enables the uploading of datasets, im-
plementations and runs. The API also contains functions that list evaluation
measures, licence data and evaluation methods. We will briefly explain the
most important features.

Functions that involve the uploading of content require the user to provide
a session hash. A session hash is a unique string which is used to authenticate

5Full documentation of the API can be found at http://www.openml.org/api/



User OpenML

authenticate

session token

(a) Authenticate

User OpenML
Data

Repository

task.search

mytask.xml

data.description

mydataset.xml

dataset url

mydataset.arff

mydatasplits.arff

splits url

(b) Download task

User OpenML
Data

Repository

implementation.get

myimp.x
ml

source_url

myimp.zip

(c) Download implementation

User OpenML

run.upload

response.xml

POST session token, run.xml, results.arff

(d) Upload run

Figure 4: Use case diagrams of the API.

the user. It is valid for a limited amount of time. Users can obtain a session
hash by invoking the function openml.authenticate (see also Figure 4a).
Inputs for this function are the username and an MD5 hash of the passwords.

Tasks can be obtained by invoking the function openml.task.search. An
XML file, similar to the XML file shown in Figure 2, is returned. The source
data described is an ID referring to a dataset. In order to obtain information
concerning this dataset, including a download URL, users should perform an
additional call to openml.data.description. The dataset can reside in any
data repository, including a user’s personal webpage. Figure 4b details on how
the content of a task is obtained.

Datasets and implementations can be obtained using the API. Both are
referred to with an ID. By invoking the functions openml.data.description
and openml.implementation.get with this ID as parameter, users obtain an
XML file describing the dataset or implementation. Figure 4c shows how to
download an implementation. Datasets can be obtained in a similar way.

Runs can be submitted by invoking the function openml.run.upload. Fig-



ure 4d outlines how this works. The user provides an XML file describing
which implementation was used, and what the parameter settings were. The
implementation that was used should already be registered on OpenML. Fur-
thermore, all output of the run must be submitted. For the supervised classifi-
cation and regression tasks, this will include a file with predictions, which will
be evaluated on the server and stored in the database. The server will return an
ID referring to the record in the database. Uploading datasets and implemen-
tations happens in a similar way. For this the functions openml.data.upload
and openml.implementation.upload are used, respectively.

A list of all evaluation measures for usage in tasks can be obtained by
invoking openml.evaluation.measures.

6 Sharing Experiments

To facilitate the sharing of experiments, plugins are being developed for pop-
ular data mining and machine learning tools, including RapidMiner. The
RapidMiner plugin can be downloaded from the OpenML website. It intro-
duces three new operators.

The Read OpenML Task operator handles the downloading of tasks. When
presented with a task id, it automatically downloads this task and all associ-
ated content, i.e., the input dataset and the data splits. Every entity down-
loaded from OpenML is cached on the user’s local disk. The operator composes
the various training and test sets, and marks attributes with certain roles as
such, e.g. the target attribute or a row id.

The resulting training and test set will be sent to the OpenML Prediction
operator. For each training set submitted to this operator, a predictive model
is built, which generates predictions for all instances in the test set. These pre-
dictions will be sent to the Share on OpenML operator, which is responsible
for submitting the results to OpenML. First, it checks whether the implemen-
tation already exists, and if not, it will be registered. After that, all parameter
values are tracked. Finally, an XML file describing the run and an ARFF file
containing the predictions will be sent to OpenML.

Figure 5 contains a workflow which uses these operators. This workflow can
also be downloaded from the website. Before it can be run, a local directory for
caching the downloaded data is required. This can be done in the Preferences
menu, under the OpenML tab. When this is set, a workflow containing the
OpenML operators can be created. A global outline is shown in Figure 5a.
The operators are connected to each other in a straightforward way. We used
a multiply operator to split the outcome of the Prediction operator to both
the general output and the Share on OpenML operator. Note that if the user
does not want to share his results on line, he can simply omit the Share on
OpenML operator.



(a) Global Workflow.

(b) Sub workflow of the OpenML Prediction operator.

Figure 5: Workflow which downloads an OpenML task, and sends back the
results.



By clicking on the OpenML Prediction operator, a screen similar to Fig-
ure 5b is shown. This is where subworkflows can be created, to handle both
the training and the test data. As for the subworkflow that handles the train-
ing data, make sure that at least a model is created, e.g., by including a Naive
Bayes operator. For the Model application part it typically suffices to insert
an Apply Model operator. Finally, as parameter of the Read OpenML Task op-
erator, a task id should be provided. These can be searched from the OpenML
website.

7 Searching OpenML

All experiments in the database are openly available to everyone. Several ways
of searching through these experiments are provided.6 The most notable ways
of searching through OpenML are textual search, the “search runs” interface
and the SQL interface.

All implementations, datasets and evaluation metrics submitted to OpenML
are required to include meta-data, such as a name, textual description, licence
data and in the case of implementations, installation notes and dependencies.
These textual descriptions are indexed by a search engine running on the web-
site, so that implementations and datasets can be searched through keywords.

The “search runs” is a wizard interface specialized in benchmark queries.
It can be found under the ‘Advanced’ tab of the search page. The user is pre-
sented with a form where he specifies which datasets (or collections of datasets)
and implementations he is interested in. Furthermore, he specifies on which
evaluation measure the benchmark should be performed. Typical questions
that can be answered with this interface are “what implementation performs
best on dataset X”, “compare several implementations on all datasets”, “show
the effect of data property DP on the optimal value of parameter P” and “how
influence parameter settings the performance of implementation X”.

The most flexible way of searching through OpenML is querying the database
directly by means of SQL statements. With some knowledge of the database
(see Section 4) complex queries can be executed in any way the user wants it.
Under the ‘Advanced’ tab of the search page some queries are provided. The
user can also inspect the SQL code of these queries, so these can be adapted to
the user’s specific needs. In Figure 6 an example of such a query is provided.
It studies the effect of the gamma parameter of the Weka implementation of
a Support Vector Machine, on the UCI letter dataset [2].

The results of queries can be obtained in CSV and ARFF format. Further-
more, scatterplots and line plots (as shown in Figure 6b) are provided.

6http://www.openml.org/search/



SELECT ps . value as gamma , e . value as accuracy
FROM cvrun r , algorithm_setup s , function_setup kernel , dataset d ,

input_setting ps , evaluation e
WHERE r . learner=s . sid and s . algorithm= ’SVM’ AND kernel . parent=s . sid

AND kernel . function= ’RBFKernel ’ AND ps . setup=s . sid AND ps . input= ’
weka .SMO(1 .53 .2 .2 )_G’ AND e . source=r . rid AND e . function= ’
predict ive_accuracy ’ AND r . inputdata=d . did AND d . name= ’ l e t t e r ’

(a) SQL statement

(b) Line plot of the result

Figure 6: Studying the effect of a parameter.

8 Summary
OpenML aims to stimulate an open approach to machine learning research,
by collecting results in a database. In order to provide an easy way of sharing
these, plugins for various machine learning tools will be provided, including
RapidMiner. Instead of running experiments over and over again, users can
easily query the database and obtain the results on relevant research questions.

Future work on OpenML includes the integration with other machine learn-
ing platforms, such as MLData and myExperiment. Also, the support for a
broader range of task types, such as time series analyses, feature selection and
graph mining, will be provided. Future work on the RapidMiner plugin in-
cludes a better integration with the various services of OpenML. Currently, the
plugin is mainly focussed on downloading tasks and uploading results. Fea-
tures like downloading workflows, uploading datasets and inspecting results
could be valuable additions to the plugin.

Acknowledgments

This work is supported by grant 600.065.120.12N150 from the Dutch Fund
for Scientific Research (NWO), and by the IST Programme of the European
Community, under the Harvest Programme of the PASCAL2 Network of Ex-
cellence, IST-2007-216886.



References
[1] D. De Roure, C. Goble, and R. Stevens. The Design and Realisation of

the myExperiment Virtual Research Environment for Social Sharing of
Workflows. Future Generation Computer Systems, 25:561–567, 2009.

[2] P.W. Frey and D. J. Slate. Letter Recognition Using Holland-Style Adap-
tive Classifiers. Machine Learning, 6:161, 1991.

[3] C. A. Goble, J. Bhagat, S. Aleksejevs, D. Cruickshank, D. Michaelides,
D. Newman, M. Borkum, S. Bechhofer, M. Roos, P. Li, and D. De Roure.
myExperiment: a repository and social network for the sharing of bioinfor-
matics workflows. Nucleic Acids Research, 38(suppl 2):W677–W682, 2010.

[4] H. Hirsh. Data mining research: Current status and future opportunities.
Statistical Analysis and Data Mining, 1(2):104–107, 2008.

[5] M. A. Nielsen. The Future of Science: Building a Better Collective Mem-
ory. APS Physics, 17(10), 2008.

[6] Y. Peng, P. Flach, C. Soares, and P. Brazdil. Improved Dataset Character-
isation for Meta-Learning. Lecture Notes in Computer Science, 2534:141–
152, 2002.

[7] J. Vanschoren, H. Blockeel, B. Pfahringer, and G. Holmes. Experiment
databases. A new way to share, organize and learn from experiments. Ma-
chine Learning, 87(2):127–158, 2012.


